scholarly journals Evaluation of Growth, Viability, Lactic Acid Production and Anti-Infective Effects of Lacticaseibacillus rhamnosus ATCC 9595 in Bacuri Juice (Platonia insignis)

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 603
Author(s):  
Yasmim Costa Mendes ◽  
Gabrielle Pereira Mesquita ◽  
Gabrielle Damasceno Evangelista Costa ◽  
Ana Carolina Barbosa da Silva ◽  
Ester Gouveia ◽  
...  

Fruit juices have been emerging as excellent vehicles for development of probiotic products due to their nutritional properties and presence of bioactive compounds. This work evaluated the growth and viability of Limosilactobacillus fermentum ATCC 23271 and Lacticaseibacillus rhamnosus ATCC 9595 in bacuri juice (Platonia insignis Mart., Clusiaceae). Both strains were able to grow in bacuri juice, without any supplementation. Viability was kept after 28 days of storage; however, growth was significantly higher for L. rhamnosus ATCC 9595 (7.40 ± 0.04 Log CFU/mL). Following this, the effects of bacterial inoculum and pulp concentration on growth and lactic acid production by L. rhamnosus ATCC 9595 were investigated using a central composite rotational design. The inoculum concentration was the main factor for obtaining the most favorable relation between growth and organic acid production (G/pH ratio). Among the tested conditions, those used in assay 6 allowed the best G/pH ratio (2.13) and higher lactic acid production (4.14 g/L). In these conditions, L. rhamnosus ATCC 9595 grown in bacuri juice showed the same resistance towards acidification or addition of lysozyme than when cultivated in MRS. Finally, the anti-infective effects of fermented and non-fermented juices were analyzed using Tenebrio molitor larvae infected by enteroaggregative Escherichia coli 042. The pre-treatment with supernatants of both fermented and non-fermented juices significantly increased the survival of E. coli-infected larvae. However, only the L. rhamnosus-fermented juice had protective effects when inoculated 2 h after infection. Collectively, the results obtained in this research allowed the basis for the development of a non-dairy probiotic product from bacuri juice.

2011 ◽  
Vol 74 (1) ◽  
pp. 94-100 ◽  
Author(s):  
A. LONDERO ◽  
R. QUINTA ◽  
A. G. ABRAHAM ◽  
R. SERENO ◽  
G. DE ANTONI ◽  
...  

We investigated the chemical and microbiological compositions of three types of whey to be used for kefir fermentation as well as the inhibitory capacity of their subsequent fermentation products against 100 Salmonella sp. and 100 Escherichia coli pathogenic isolates. All the wheys after fermentation with 10% (wt/vol) kefir grains showed inhibition against all 200 isolates. The content of lactic acid bacteria in fermented whey ranged from 1.04 × 107 to 1.17 × 107 CFU/ml and the level of yeasts from 2.05 × 106 to 4.23 × 106 CFU/ml. The main changes in the chemical composition during fermentation were a decrease in lactose content by 41 to 48% along with a corresponding lactic acid production to a final level of 0.84 to 1.20% of the total reaction products. The MIC was a 30% dilution of the fermentation products for most of the isolates, while the MBC varied between 40 and 70%, depending on the isolate. The pathogenic isolates Salmonella enterica serovar Enteritidis 2713 and E. coli 2710 in the fermented whey lost their viability after 2 to 7 h of incubation. When pathogens were deliberately inoculated into whey before fermentation, the CFU were reduced by 2 log cycles for E. coli and 4 log cycles for Salmonella sp. after 24 h of incubation. The inhibition was mainly related to lactic acid production. This work demonstrated the possibility of using kefir grains to ferment an industrial by-product in order to obtain a natural acidic preparation with strong bacterial inhibitory properties that also contains potentially probiotic microorganisms.


1973 ◽  
Vol 53 (1) ◽  
pp. 81-85 ◽  
Author(s):  
T. R. DAVIDSON ◽  
K. R. STEVENSON ◽  
J. BUCHANAN-SMITH

Early bloom alfalfa (Medicago sativa cult Saranac), at 22.5% dry matter, was harvested with a forage harvester. Formic acid (85% solution) and formalin (37.5% solution) and various combinations of mixtures were applied to the forage on a fresh weight basis at rates of 0.33, 0.50, and 0.66%. A sample of the treated material was ensiled in test tube silos fitted with fermentation locks. At various time intervals, analyses were made to follow the patterns of organic acid production. In untreated silage, the pH dropped to 4.3 with high lactic acid production, but after 39 days, the pH began to rise as lactic acid was degraded by Clostridia. Formic acid at 0.33 and 0.50% delayed but did not prevent either lactic acid production or subsequent degradation. Formic acid (0.66%) and all rates of formalin depressed lactic acid production. The production of butyric, isobutyric, and isovaleric acids was depressed to low levels only at the 0.66% rate of treatments. Formic acid was more effective than formalin in depressing volatile fatty acids. The formic–formalin mixtures gave results intermediate to separate applications of formic acid and formalin for all parameters analyzed.


2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Ratna Ratna ◽  
Ulfa Triovanta ◽  
Darwin Darwin

The aim of this research is to study the fermentation technique of coconut processed liquid waste by varying the inoculum concentration of Lactobacillus acidophilus bacteria for lactic acid production. This research was carried out in several steps, namely the first step was the inoculum cultivation process of Lactobacillus acidophilus bacteria, the second step was the fermentation process of coconut water with variations in the concentration of Lactobacillus acidophilus bacteria inoculum, namely 5%, 10% and 20%. Analysis of lactic acid products, pH, glucose, Total Dissolved Solid (TDS), Total Suspended Solid (TSS) and Volatile Suspended Solid (VSS). The variation in the concentration of Lactobacillus acidophilus bacteria inoculum 20% is the most optimum to produce total lactic acid for batch and continuous systems. The results of the correlation analysis for inoculum variations of 5%, 10% and 20% had a strong relationship with lactic acid production, decreased pH and decreased glucose levels. The greater the inoculum concentration, the greater the decrease in the TDS, TSS and VSS content.


2015 ◽  
Vol 20 (4) ◽  
pp. 187 ◽  
Author(s):  
Subagiyo Subagiyo ◽  
Sebastian Margino ◽  
Triyanto Triyanto ◽  
Wilis Ari Ari Setyati1,2

Bakteri asam laktat telah lama dikembangkan sebagai probiotik. Penentuan kondisi lingkungan yang optimum untuk pertumbuhan sel serta asam organik memberikan gambaran aktivitas optimum untuk kinerja probiotik baik dalam sistem fisiologi inang maupun dalam sistem bioproses untuk produksi sel dan metabolit. Penelitian ini bertujuan untuk mengetahui pengaruh faktor lingkungan (pH, suhu dan salinitas) terhadap pertumbuhan dan produksi total asam organik tiga isolat bakteri asam laktat yang telah diseleksi dari intestinum udang penaeid. Eksperimen menggunakan  medium deMan, Rogosa and Sharpe (MRS) cair. Perlakuan pH awal meliputi  nilai pH 4, 5 dan 6. Perlakuan suhu meliputi suhu 25, 30 dan 35OC serta perlakuan salinitas  meliputi salinitas 0,75 %, 1,5 % dan 3 %.  Setiap interval 6 jam dilakukan pengambilan sampel kultur bakteri dan penghitungan pertumbuhan berdasarkan perubahan optical density (pada panjang gelombang 600 nm) sedangkan produksi asam laktat dianalisis dengan metode titrimetrik menggunakan NaOH 1 N sebagai larutan titrasinya. Berdasarkan hasil penelitian disimpulkan bahwa suhu, pH awal dan salinitas berpengaruh terhadap pertumbuhan dan produksi asam organik. Nilai kondisi lingkungan terbaik untuk pertumbuhan dapat berbeda dengan nilai terbaik untuk produksi asam organic. Hal ini ditunjukan oleh nilai laju pertumbuhan dan produksi asam laktat tertinggi dari tiga isolat uji terjadi pada suhu, pH awal dan salinitas yang berbeda.  Isolat L12 tumbuh optimum pada suhu 30oC, pH awal 6 dan salinitas 0,75%. Isolat L14 tumbuh optimum pada suhu 30oC, pH awal 6 dan salinitas 1.5%. Isolat L 21 tumbuh optimum pada suhu 30 oC, pH awal 6 dan salinitas 1.5%. Kata kunci: bakteri asam laktat, suhu, pH, salinitas, asamorganik, pertumbuhan, Lactic acid bacteria are widely distributed in intestinal tracts of various animals where they live as normal flora.Strains of lactic acid bacteria are the most common microbes employed as probiotics, The optimum condition for growth are important to mass production and to determined parameters most suitable for growth. The effects of  temperature, pH and salinity on the growth and production of lactic acid from the three shrimp intestinal lactic acid bacteria isolates were conducted using bacth culture in a flask. These variables for growth were determined based on the growth curves and lactic acid production. Data from the flask batch experiment demonstrated that the best initial pH and temperature  for growth of isolat L12 ,L14 and L21 were found to be pH 6 and 30 OC.  Salinity (NaCl concentration) 0,75% were the best for growth of isolat L12. Salnity  1,5 % were best for growth of isolat L14 and L21. Key words : growth, temperature, pH, salinity, lactic aid bacteria


2012 ◽  
Vol 476-478 ◽  
pp. 2051-2054 ◽  
Author(s):  
Jin Fang Zhao ◽  
Li Yuan Xu ◽  
Yong Ze Wang ◽  
Jin Hua Wang ◽  
Sheng De Zhou

Escherichia coli W produces a mixture of organic acids during fermentation in mineral salts medium using glucose as the sole carbon source. Among these products, D-lactate, acetate, succinate, and ethanol are the majors, with formate as a minor. In order to evaluate the effect of adhE mutation on the metabolism for D-lactic acid production by E. coli W, an adhE deletion mutant JH11 was constructed using the RED recombination system and the flipase recognition target (FRT) site-specific recombinant technology. Compared to the parent strain, JH11 produced significantly higher concentration of D-lactate due to the increased NADH availability, with slightly changed acetate (increased), and succinate (decreased), in fermentations using mineral salts medium containing glucose as the carbon source and calcium carbonate as the neutralizer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Beatriz Martines de Souza ◽  
Mayara Souza Silva ◽  
Aline Silva Braga ◽  
Patrícia Sanches Kerges Bueno ◽  
Paulo Sergio da Silva Santos ◽  
...  

AbstractThis in vitro study evaluated the protective effect of titanium tetrafluoride (TiF4) varnish and silver diamine fluoride (SDF) solution on the radiation-induced dentin caries. Bovine root dentin samples were irradiated (70 Gy) and treated as follows: (6 h): 4% TiF4 varnish; 5.42% NaF varnish; 30% SDF solution; placebo varnish; or untreated (negative control). Microcosm biofilm was produced from human dental biofilm (from patients with head-neck cancer) mixed with McBain saliva for the first 8 h. After 16 h and from day 2 to day 5, McBain saliva (0.2% sucrose) was replaced daily (37 °C, 5% CO2) (biological triplicate). Demineralization was quantified by transverse microradiography (TMR), while biofilm was analyzed by using viability, colony-forming units (CFU) counting and lactic acid production assays. The data were statistically analyzed by ANOVA (p < 0.05). TiF4 and SDF were able to reduce mineral loss compared to placebo and the negative control. TiF4 and SDF significantly reduced the biofilm viability compared to negative control. TiF4 significantly reduced the CFU count of total microorganism, while only SDF affected total streptococci and mutans streptococci counts. The varnishes induced a reduction in lactic acid production compared to the negative control. TiF4 and SDF may be good alternatives to control the development of radiation-induced dentin caries.


Sign in / Sign up

Export Citation Format

Share Document