scholarly journals Steam Explosion-Assisted Extraction of Protein from Fish Backbones and Effect of Enzymatic Hydrolysis on the Extracts

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1942
Author(s):  
Ye Dong ◽  
Wen Yan ◽  
Xiao-Di Zhang ◽  
Zhi-Yuan Dai ◽  
Yi-Qi Zhang

The development of an efficient pretreatment, prior to enzymatic hydrolysis, is a good strategy for the sustainable use of refractory fish byproducts. This study compared hydrothermal pretreatments at 159 °C for 2 min, followed by water extraction (steam explosion-assisted extraction, SE) and 121 °C for 70 min (hot-pressure extraction, HPE), for the recovery of proteins from fish backbones. The effect of enzymatic hydrolysis on the properties of the obtained fish bone protein (FBP) was also evaluated. The results demonstrated that FBP had high contents of protein (81.09–84.88 g/100 g) and hydroxyproline (70–82 residues/1000 residues). After hydrolysis with Flavourzyme, for 3 h, the FBP hydrolysates that were pretreated with SE (SFBP-H) exhibited a better degree of hydrolysis (DH) and nitrogen recovery (NR), and a higher level of umami taste free amino acids (151.50 mg/100 mL), compared with the HPE-treated samples. The obtained SFBP-H mainly distributed below 3000 Da and had strong scavenging effects on 1,1-diphenyl-2-picrylhydrazy (DPPH) (IC50 = 4.24 mg/mL) and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) (IC50 = 1.93 mg/mL) radicals. Steam explosion-assisted extraction is a promising route for recovering proteins from native fish bone materials, and improving the flavor and antioxidant activity of the hydrolysates.

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2844
Author(s):  
Joaquín Gómez-Estaca ◽  
Irene Albertos ◽  
Ana Belén Martín-Diana ◽  
Daniel Rico ◽  
Óscar Martínez-Álvarez

The present work shows a procedure to valorize non-commercial boiled shrimp to produce functional ingredients, using a combined treatment based on enzymatic hydrolysis and subsequent glycation under mild conditions. Antioxidant and prolyl endopeptidase-inhibiting activities were determined as a function of hydrolysis and glycation times (0–120 min and 0–180 min, respectively). The reaction products were characterized by determining the degree of hydrolysis, browning, fluorescent compounds, free amino acids, phenol content, Fourier transform infrared spectroscopy (FTIR), and molecular weight of the different fractions obtained. Enzymatic hydrolysis generated hydrolysates with significant antioxidant and prolyl endopeptidase-inhibiting activities. Glycation under mild conditions was used as a strategy to improve the antioxidant and potential nootropic properties of the hydrolysates. During glycation, the free amino acid content decreased, total phenols and fluorescent compounds increased significantly, and low molecular weight melanoidins were formed. The presence of peptide-glucose conjugates was also confirmed by FTIR. Glycation increased the antioxidant activities of the hydrolysates; however, their prolyl-endopeptidase-inhibiting activity was lost. Results showed that compounds with promising antioxidant (hydrolysis and glycation) and potential nootropic (hydrolysis) activities and applications in food systems were obtained from the biotechnological strategy used.


2012 ◽  
Vol 554-556 ◽  
pp. 1387-1394
Author(s):  
He Jian Xiong ◽  
Longfei Cao ◽  
Huajun You ◽  
Qingpi Yan ◽  
Ying Ma

Tilapia frames were subjected to enzymatic hydrolysis using Flavouzryme and Papain with a ratio of 2:1. The relationship of temperature (40 to 60°C), enzyme: substrate ratio (0.5% to 4.5%), initial pH (6.0 to 8.0) and hydrolysis time (1h to 9h) to the degree of hydrolysis were determined. The enzymatic hydrolysis was optimized for maximum degree of hydrolysis using surface response methodology. The optimum conditions for enzymatic hydrolysis of tilapia frames were temperature 53°C, enzyme : substrate ratio of 3.5%, initial pH 7.2, and reaction time 7h. Under these conditions a degree of hydrolysis of 40.01% were obtained. The yield of free amino acids in the hydrolysate was 46.61mg/g tilapia frames. The flavor amino acids and essential amino acids occupied up to 31.8% and 49.0% of the total free amino acids respectively. The hydrolysate of waste tilapia frames showed good potential for applications such as protein supplementation in food system.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 507
Author(s):  
Eduardo Troncoso-Ortega ◽  
Rosario del P. Castillo ◽  
Pablo Reyes-Contreras ◽  
Patricia Castaño-Rivera ◽  
Regis Teixeira Mendonça ◽  
...  

The objective of this study was to investigate structural changes and lignin redistribution in Eucalyptus globulus pre-treated by steam explosion under different degrees of severity (S0), in order to evaluate their effect on cellulose accessibility by enzymatic hydrolysis. Approximately 87.7% to 98.5% of original glucans were retained in the pre-treated material. Glucose yields after the enzymatic hydrolysis of pre-treated material improved from 19.4% to 85.1% when S0 was increased from 8.53 to 10.42. One of the main reasons for the increase in glucose yield was the redistribution of lignin as micro-particles were deposited on the surface and interior of the fibre cell wall. This information was confirmed by laser scanning confocal fluorescence and FT-IR imaging; these microscopic techniques show changes in the physical and chemical characteristics of pre-treated fibres. In addition, the results allowed the construction of an explanatory model for microscale understanding of the enzymatic accessibility mechanism in the pre-treated lignocellulose.


2013 ◽  
Vol 411-414 ◽  
pp. 3205-3209
Author(s):  
Fang Qian ◽  
Lei Zhao ◽  
Shu Juan Jiang ◽  
Guang Qing Mu

Based on single factor analysis for the enzymatic hydrolysis of whey protein, papain was selected as the optimal enzyme and its enzymatic hydrolysis conditions were optimized by the quadratic regression orthogonal rotary test. The orthogonal regression model for degree of hydrolysis (DH) to three factors including temperature (X1), time (X2), enzyme dosage (X3) was established as follow: DH=10.40+0.22X1+0.30X2+1.31X3+0.019X1X2+0.011X1X3-0.039X2X3-0.39X12-0.16X22-0.40X32, Verification test showed a DH of 11.7% was obtained at the optimal hydrolysis condition of 56.6°C, 113.8 min and enzyme 8213.7 U /g protein, which basically consisted with the model theoretical value.


2021 ◽  
Vol 233 ◽  
pp. 02040
Author(s):  
Xuting Bai ◽  
Tao Li ◽  
Honglei Zhao ◽  
Xuepeng Li ◽  
Wenhui Zhu ◽  
...  

Protamex was selected to prepare the hydrolysate. E-tongue, free amino acid combined with soluble peptide analysis were used to detect the flavor changes of Aloididae aloidi during enzymolysis. Degree of proteolysis increased with the prolongation of enzymolysis time, and reached the maximum value at 8 hours. The content of soluble peptide of hydrolysate increased firstly and then decreased in the later process. The E-tongue could effectively distinguish the taste difference of hydrolysates at different enzymolysis time, and the hydrolysate presented strong bitterness and astringency during the whole enzymolysis. The total amount of free amino acids in the hydrolysate increased gradually, and some sweet, umami and bitter amino acids increased in varying degrees during the process of enzymolysis.


Sign in / Sign up

Export Citation Format

Share Document