scholarly journals Retraction: Masiá, C. et al. Effect of Lactobacillus rhamnosus on Physicochemical Properties of Fermented Plant-Based Raw Materials. Foods 2020, 9, 1182

Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1782
Author(s):  
Carmen Masiá ◽  
Poul Erik Jensen ◽  
Patrizia Buldo

The journal retracts the article [...]

Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1182 ◽  
Author(s):  
Carmen Masiá ◽  
Poul Erik Jensen ◽  
Patrizia Buldo

Texture and flavor are currently the main challenges in the development of plant-based dairy alternatives. To overcome them, the potential of microorganisms for fermentation of plant-based raw materials is generating great interest in the food industry. This study examines the effect of Lactobacillus rhamnosus, LGG® (LGG® is a trademark of Chr. Hansen A/S) on the physicochemical properties of fermented soy, oat, and coconut. LGG® was combined with different lactic acid bacteria (LAB) strains and Bifidobacterium, BB-12® (BB-12® is a trademark of Chr. Hansen A/S). Acidification, titratable acidity, and growth of LGG® and BB-12® were evaluated. Oscillation and flow tests were performed to analyze the rheological properties of fermented samples. Acids, carbohydrates, and volatile organic compounds in fermented samples were identified, and a sensory evaluation with a trained panel was conducted. LGG® reduced fermentation time in all three bases. LGG® and BB-12® grew in all fermented raw materials above 107 CFU/g. LGG® had no significant effect on rheological behavior of the samples. Acetoin levels increased and acetaldehyde content decreased in the presence of LGG® in all three bases. Diacetyl levels increased in fermented oat and coconut samples when LGG® was combined with YOFLEX® YF-L01 and NU-TRISH® BY-01 (YOFLEX® and NU-TRISH® are trademarks of Chr. Hansen A/S). In all fermented oat samples, LGG® significantly enhanced fermented flavor notes, such as sourness, lemon, and fruity taste, which in turn led to reduced perception of the attributes related to the base. In fermented coconut samples, gel firmness perception was significantly improved in the presence of LGG®. These findings suggest supplementation of LAB cultures with LGG® to improve fermentation time and sensory perception of fermented plant-based products.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 573
Author(s):  
Carmen Masiá ◽  
Asger Geppel ◽  
Poul Erik Jensen ◽  
Patrizia Buldo

To overcome texture and flavor challenges in fermented plant-based product development, the potential of microorganisms is generating great interest in the food industry. This study examines the effect of Lactobacillus rhamnosus on physicochemical properties of fermented soy, oat, and coconut. L. rhamnosus was combined with different lactic acid bacteria strains and Bifidobacterium. Acidification, titratable acidity, and viability of L. rhamnosus and Bifidobacterium were evaluated. Oscillation and flow tests were performed to characterize rheological properties of fermented samples. Targeted and untargeted volatile organic compounds in fermented samples were assessed, and sensory evaluation with a trained panel was conducted. L. rhamnosus reduced fermentation time in soy, oat, and coconut. L. rhamnosus and Bifidobacterium grew in all fermented raw materials above 107 CFU/g. No significant effect on rheological behavior was observed when L. rhamnosus was present in fermented samples. Acetoin levels increased and acetaldehyde content decreased in the presence of L. rhamnosus in all three bases. Diacetyl levels increased in fermented oat and coconut samples when L. rhamnosus was combined with a starter culture containing Streptococcus thermophilus and with another starter culture containing S. thermophilus, L. bulgaricus and Bifidobacterium. In all fermented oat samples, L. rhamnosus significantly enhanced fermented flavor notes, such as sourness, lemon, and fruity taste, which in turn led to reduced perception of base-related attributes. In fermented coconut samples, gel firmness perception was significantly improved with L. rhamnosus. The findings suggest that L. rhamnosus can improve fermentation time and sensory perception of fermented plant-based products.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yasin Erdoğan

Handere clay deposits were discovered at Adana in Turkey. These clay units primarily consist of uncoloured claystone, pebbly sandstone, sandstone, siltstone, and mudstone marl and include gypsum lenses and clay levels of various thicknesses in places. The physicochemical properties of these clays have been investigated by different techniques including Scanning Electron and Elemental Analysis (SEM and EDS), mineralogical analyses, chemical and physical analyses, X-ray diffraction (XRD), thermogravimetric differential thermal analysis (TG-DTA), and Atterberg (Consistency) Limits Test. The mineralogical composition deduced from XRD is wide (smectite + palygorskite + illite ± feldspar ± chlorite ± quartz ± calcite ± serpentine) due to the high smectite contents (≈85%). SEM studies reveal that smectite minerals are composed of irregular platy leaves and show honeycomb pattern in the form of wavy leaves in places. The leaves presenting an array with surface edge contact are usually concentrated in the dissolution voids and fractures of volcanic glass. Organic matter content and loss on ignition analysis of raw materials are good for all the studied samples. In summary, Handere clays can be used as building materials in bricks, roof tiles, and cement and as a binder.


2018 ◽  
Vol 8 (3) ◽  
pp. 168-175 ◽  
Author(s):  
Sara da Silva Anacleto ◽  
Marcella Matos Cordeiro Borges ◽  
Hanna Leijoto de Oliveira ◽  
Andressa Reis Vicente ◽  
Eduardo Costa de Figueiredo ◽  
...  

Author(s):  
Tristan Dupeux ◽  
Théophile Gaudin ◽  
Clémentine Marteau‐Roussy ◽  
Jean‐Marie Aubry ◽  
Véronique Nardello‐Rataj

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Qianlan Wu ◽  
Yang Xian ◽  
Zilin He ◽  
Qi Zhang ◽  
Jun Wu ◽  
...  

Abstract As a multifunctional material, biochar is considered a potential adsorbent for removing heavy metals from wastewater. Most biochars with high adsorption capacities have been modified, but this modification is uneconomical, and modifying biochar may cause secondary pollution. Thus, it is necessary to develop an efficient biochar without modification. In this study, spent P. ostreatus substrate and spent shiitake substrate were used as the raw materials to prepare biochar. Then, the physicochemical properties of the biochars and their removal efficiencies for Pb(II) were investigated. The results showed that the physicochemical properties (e.g., large BET surface area, small pore structure and abundant functional groups) contributed to the large adsorption capacity for Pb(II); the maximum adsorption capacities were 326 mg g−1 (spent P. ostreatus substrate-derived biochar) and 398 mg g−1 (spent shiitake substrate-derived biochar), which are 1.6–10 times larger than those of other modified biochars. The Pb(II) adsorption data could be well described by the pseudo-second-order kinetic model and the Langmuir model. This study provides a new method to comprehensively utilize spent mushroom substrates for the sustainable development of the edible mushroom industry.


Clay Minerals ◽  
2010 ◽  
Vol 45 (2) ◽  
pp. 229-240 ◽  
Author(s):  
M. Rebelo ◽  
F. Rocha ◽  
E. Ferreira Da Silva

AbstractThe use of pelitic geological materials for the treatment of muscle-bone-skin pathologies, by application of a cataplasm made of clay and mineral water mixture, is currently receiving attention and interest from the general public and scientific community. In Portugal there are several natural occurrences of clays/muds which are used for pelotherapy and/or geotherapy. These are carried out either indoors (thalassotherapy and thermal centres) or outdoors, in natural sites generally located near the seaside. The aim of this study is to assess the mineralogical and physicochemical properties of Portuguese raw materials for therapeutic purposes. These materials were collected from different Portuguese Mesozoic-Cenozoic geological formations located in the neighbourhood of thermal centres or at beaches known from their empirical applications. X-ray diffraction (XRD) and scanning electron microscopy (SEM-EDS) were used to assess the mineralogical composition of these clays. Physicochemical properties, such as specific surface area, cation exchange capacity, plasticity/abrasiveness indices and heat diffusiveness were also determined. Having distinct geological ages and genesis, the materials examined are mainly illitic. Less abundant kaolinite and smectite are also present. With respect to their physicochemical properties, all samples have good thermal properties which make them potentially suitable for therapeutic or aesthetic purposes.


2019 ◽  
Vol 11 (2) ◽  
pp. 174-186
Author(s):  
Charles Bristone ◽  
Mamudu Halidu Badau ◽  
Joseph Uchechi Igwebuike ◽  
Nahemiah Danbaba

The broken fractions of rice cultivars improved for yield, grain quality, amylose content and tolerance to common production constraints consisting of FARO 44, FARO 52, NERICA L-34, NERICA L-19 and LOCAL RICE. The rice cultivars, Sorghum malt and soybean were processed. Evaluation of the physicochemical properties of these new African rice cultivars together with their products yield and utilization (value addition) were the main objective of this study. The experimental design for these infant food formulations (5x2x2 factorial design) consisted of those 5 rice cultivars, sorghum malt (0, 5%) and soybeans flour (0, 30%). These formulations together with the raw materials were evaluated for their physicochemical properties. Manufacturing cost of formulations with ratios of rice to soybeans 70:30 with malt were selected and quantified. Results of particle size distributions showed significant (p < 0.05) difference. However, 98.38 and 94.90% of raw materials and blends respectively, successfully passed through 600 µm sieve aperture. Mesh 300 and 180 µm were found to retain the highest percentage particles. Functional properties of raw materials and blends were within the recommended range. More importantly, pH values of blends were comparable to infants’ natural milk drinks. Proximate composition of raw materials and blends contain 4.14 to 9.59% moisture, 0.37 to 5.12% ash, 8.25 to 45.35% protein, 0.41 to 20.00% fat and 26.54 to 82.59% carbohydrate. Blends fiber and energy ranged from 1.27 to 4.33 and 362.95 to 388.71 Kcal (1541.92 to 1643.04 KJ) respectively. Formulations with ratios of rice to soybeans 70:30 with malt and those of rice 100% alone with malt were observed suitable as follow-on formulae and for infant(s) with critical protein related ailments, respectively. Net profit generated is more significant than interest rate that could have been obtained from bank saving system


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
A. Nasiru ◽  
N. Ismail ◽  
M. H. Ibrahim

Ruminants are important sources of meat and milk. Their production is associated with manure excretion. Estimates of over 3,900,000 million metric tonnes of manure are produced daily from ruminants worldwide. Storage and spread of this waste on land pose health risks and environmental problems. Efficient and sustainable way of handling ruminant manure is required. Composting and vermicomposting are considered two of the best techniques for solid biomass waste management. This paper presents vermicomposting as an effective tool for ruminant manure management. Vermicomposting is a mesophilic biooxidation and stabilisation process of organic materials that involves the joint action of earthworm and microorganism. Compared with composting, vermicomposting has higher rate of stabilisation and it is greatly modifying its physical and biochemical properties, with low C : N ratio and homogenous end product. It is also costeffective and ecofriendly waste management. Due to its innate biological, biochemical and physicochemical properties, vermicomposting can be used to promote sustainable ruminant manure management. Vermicomposts are excellent sources of biofertiliser and their addition improves the physiochemical and biological properties of agricultural soils. In addition, earthworms from the vermicomposting can be used as source of protein to fishes and monogastric animals. Vermicompost can also be used as raw materials for bioindustries.


Sign in / Sign up

Export Citation Format

Share Document