scholarly journals Effect of Lactobacillus rhamnosus on Physicochemical Properties of Fermented Plant-Based Raw Materials

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 573
Author(s):  
Carmen Masiá ◽  
Asger Geppel ◽  
Poul Erik Jensen ◽  
Patrizia Buldo

To overcome texture and flavor challenges in fermented plant-based product development, the potential of microorganisms is generating great interest in the food industry. This study examines the effect of Lactobacillus rhamnosus on physicochemical properties of fermented soy, oat, and coconut. L. rhamnosus was combined with different lactic acid bacteria strains and Bifidobacterium. Acidification, titratable acidity, and viability of L. rhamnosus and Bifidobacterium were evaluated. Oscillation and flow tests were performed to characterize rheological properties of fermented samples. Targeted and untargeted volatile organic compounds in fermented samples were assessed, and sensory evaluation with a trained panel was conducted. L. rhamnosus reduced fermentation time in soy, oat, and coconut. L. rhamnosus and Bifidobacterium grew in all fermented raw materials above 107 CFU/g. No significant effect on rheological behavior was observed when L. rhamnosus was present in fermented samples. Acetoin levels increased and acetaldehyde content decreased in the presence of L. rhamnosus in all three bases. Diacetyl levels increased in fermented oat and coconut samples when L. rhamnosus was combined with a starter culture containing Streptococcus thermophilus and with another starter culture containing S. thermophilus, L. bulgaricus and Bifidobacterium. In all fermented oat samples, L. rhamnosus significantly enhanced fermented flavor notes, such as sourness, lemon, and fruity taste, which in turn led to reduced perception of base-related attributes. In fermented coconut samples, gel firmness perception was significantly improved with L. rhamnosus. The findings suggest that L. rhamnosus can improve fermentation time and sensory perception of fermented plant-based products.

Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1182 ◽  
Author(s):  
Carmen Masiá ◽  
Poul Erik Jensen ◽  
Patrizia Buldo

Texture and flavor are currently the main challenges in the development of plant-based dairy alternatives. To overcome them, the potential of microorganisms for fermentation of plant-based raw materials is generating great interest in the food industry. This study examines the effect of Lactobacillus rhamnosus, LGG® (LGG® is a trademark of Chr. Hansen A/S) on the physicochemical properties of fermented soy, oat, and coconut. LGG® was combined with different lactic acid bacteria (LAB) strains and Bifidobacterium, BB-12® (BB-12® is a trademark of Chr. Hansen A/S). Acidification, titratable acidity, and growth of LGG® and BB-12® were evaluated. Oscillation and flow tests were performed to analyze the rheological properties of fermented samples. Acids, carbohydrates, and volatile organic compounds in fermented samples were identified, and a sensory evaluation with a trained panel was conducted. LGG® reduced fermentation time in all three bases. LGG® and BB-12® grew in all fermented raw materials above 107 CFU/g. LGG® had no significant effect on rheological behavior of the samples. Acetoin levels increased and acetaldehyde content decreased in the presence of LGG® in all three bases. Diacetyl levels increased in fermented oat and coconut samples when LGG® was combined with YOFLEX® YF-L01 and NU-TRISH® BY-01 (YOFLEX® and NU-TRISH® are trademarks of Chr. Hansen A/S). In all fermented oat samples, LGG® significantly enhanced fermented flavor notes, such as sourness, lemon, and fruity taste, which in turn led to reduced perception of the attributes related to the base. In fermented coconut samples, gel firmness perception was significantly improved in the presence of LGG®. These findings suggest supplementation of LAB cultures with LGG® to improve fermentation time and sensory perception of fermented plant-based products.


2021 ◽  
Vol 9 (08) ◽  
pp. 1099-1108
Author(s):  
Okafor S.O. ◽  
◽  
Anyalogbu E.A. ◽  

The effect of adding Saccharomyces boullardii in soya yoghurt was studied. The control was made with soya milk and traditional starter culture (Lactobacillus bulgaricus and Streptococcus thermophilus) while the other three treatments were made by adding 1%, 2%, 3% of S. boulardii with traditional yoghurt starter. Proximate composition of all yoghurt treatments were determined after fermentation time. Shelf-life evaluation of yoghurt treatment were observed during the storage time. During the proximate composition evaluation, treatment with 3% S. boulardii had highest moisture and protein content at 83.43±0.03 and 92±0.3 but least ash and carbohydrate content at 1.2±0.18 and 4.27±0.3. During shelf-life evaluation, titratable acidity and syneresis values of yoghurt with S. boulardii were slightly increased while pH and water holding capacity decreased compared with control yoghurt. After 21 days, S. boulardii counts were 5.89, 6.07 and 6.03 log.cfu/ml for yoghurt with 2% and 3% S. boulardii respectively whereas L. bulgaricus and S. thermophilius of yoghurt with 3% S. boulardii were 7.45 and 8.38 log.cfu/ml respectively. The addition of S. boulardii improved the survivability of the bacteria starter culture.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 265 ◽  
Author(s):  
Alex Wacoo ◽  
Ivan Mukisa ◽  
Rehema Meeme ◽  
Stellah Byakika ◽  
Deborah Wendiro ◽  
...  

Fermentation of food products can be used for the delivery of probiotic bacteria and means of food detoxification, provided that probiotics are able to grow, and toxins are reduced in raw materials with minimal effects on consumer acceptability. This study evaluated probiotic enrichment and detoxification of kwete, a commonly consumed traditional fermented cereal beverage in Uganda, by the use of starter culture with the probiotic Lactobacillus rhamnosus yoba 2012 and Streptococcus thermophilus C106. Probiotic kwete was produced by fermenting a suspension of ground maize grain at 30 °C for a period of 24 h, leading to a decrease of the pH value to ≤ 4.0 and increase in titratable acidity of at least 0.2% (w/v). Probiotic kwete was acceptable to the consumers with a score of ≥6 on a 9-point hedonic scale. The products were stable over a month’s study period with a mean pH of 3.9, titratable acidity of 0.6% (w/v), and Lactobacillus rhamnosus counts >108 cfu g−1. HPLC analysis of aflatoxins of the water-soluble fraction of kwete indicated that fermentation led to an over 1000-fold reduction of aflatoxins B1, B2, G1, and G2 spiked in the raw ingredients. In vitro fluorescence spectroscopy confirmed binding of aflatoxin B1 to Lactobacillus rhamnosus with an efficiency of 83.5%. This study shows that fermentation is a means to enrich with probiotics and reduce widely occurring aflatoxin contamination of maize products that are consumed as staple foods in sub-Saharan Africa.


Food systems ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 12-18
Author(s):  
A. I. Chirsanova ◽  
A. V. Boistean ◽  
N. Chiseliță ◽  
R. Siminiuc

The objective of the study was to investigate the potential application of beta-glucans obtained from yeast sediment resulting from the manufacture of local Viorica wine (2018 harvest). To determine the amount of beta-glucans in the yeast sediment, two were used: the calculation method and the laboratory method, obtaining similar quantities, 29.92 ± 0.47 and 28.17 ± 0.32 respectively. The beta -glucans obtained were incorporated in various concentrations (0.1%; 0.2%; 0.3%; 0.4% and 0.5%) in the yogurt obtained from skimmed milk. The effect of beta-glucan addition on the physicochemical properties of freshly prepared yogurts was investigated. The addition of beta-glucans positively influenced the formation of the gel relay resulting in a decrease in the fermentation time of yogurt. The final pH point of 4.5 was reached one hour earlier (in 4 hours) compared to the control sample (in 5 hours). The results showed that there are no significant changes in physicochemical properties (titratable acidity, pH, viscosity and syneresis). The results obtained report that beta-glucans can be used as a thickening agent for low-fat yogurts by shortening the fermentation period and not essentially changing the sensory characteristics. Experimental results showed that the glycemic index of yogurt samples with the addition of beta-glucans have similar values in the range of 28-30. Respectively, the yogurts under study are attributed to food category with low glycemic index.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1782
Author(s):  
Carmen Masiá ◽  
Poul Erik Jensen ◽  
Patrizia Buldo

The journal retracts the article [...]


2015 ◽  
Vol 35 (04) ◽  
pp. 449 ◽  
Author(s):  
Tyas Utami ◽  
Rifa Nurhayati ◽  
Endang Sutriswati Rahayu

The aim of this study was to investigate the population of selected bacteria and some chemical characteristics during sorghum fermentation with the addition of Lactobacillus plantarum S4512. Proteolytic L. plantarum S4512 isolated from natural sorghum fermentation was added into sorghum fermentation. Sorghum flour was mixed with sterile water(1:2 w/v) and then was inoculated with 1% v/v (about 109 CFU/ml) culture of L. plantarum S4512. Fermentation was carried out at 37°C for 24 hours. As a control, natural sorghum fermentation without addition of a starter culture was carried out at 30°C for 24 hours. During fermentation time, the amount of bacteria, acid producing bacteria, coliform and proteolytic bacteria were monitored. The titratable acidity, pH, soluble protein, and proteolytic activity were also measured. Addition of L. plantarum S4512 increased significantly the initial population of total bacteria, lactic acidbacteria and proteolytic bacteria to 107 CFU/ml and suppressed the growth of coliforms indicated by siginificantly decline of coliforms population after 6 h fermentation. The production of acid was doubled of that in the naturalfermentation resulted in the lower pH to 3.14. Both natural sorghum fermentation and that with addition of proteolytic L. plantarum S4512 showed some proteolytic activities during fermentation.Keywords: Lactic acid bacteria, sorghum fermentation, proteolytic activity


2018 ◽  
Vol 6 (2) ◽  
pp. 509-519
Author(s):  
Herve Mwizerwa ◽  
George Ooko Abong ◽  
Samuel Kuria Mbugua ◽  
Michael Wandayi Okoth ◽  
Patrick Gacheru ◽  
...  

In most parts of Africa, the process of fermentation is not controlled and does not adhere to good manufacturing practices, therefore spoilage and pathogenic microorganisms can alter the quality of the end product and may cause foodborne illness.Traditional fermented products are mostly processed in an environment which creates a selection of microorganisms that produce the desired end product. In an attempt to find Lactobacilli which have probiotic properties and can be used in the development of starter culture for controlled fermentation of cereal products, the microbial populations of maize flour, overnight soaked dough, fermented cooked porridge, Mkarango and Busaawere enumerated and the inherent lactobacilli isolated. The microbial and biochemical profiles of the 6 days spontaneous Mkarangofermentation process were determined.The total viable count was 6.93 log cfu/g for fermented cooked porridge, 7.70 log cfu/g in Mkarango and 8.58 log cfu/g forBusaa. Lactobacillicounts were higher in maize flour with 7.43 log cfu/g whileEnterobactericeae were lower in Mkarango.The highest moulds and yeasts counts were observed forBusaa, 7.25 log cfu/g.The lactobacilli isolates from fermented maize based products from western Kenya were predominantly Lactobacillus fermentum andLactobacillus Plantarum.During fermentation time, Lactobacilliincreased from 6.62 to 12.46 log cfu/gafter 3 daysof fermentation. From day 4, an increase in moulds and yeast count was observed, varying from 8.42 to 10.53 log cfu/g. Enterobactericeae count decreased from 5.99 log cfu/g on day 1 to less than 1 log cfu/g on day 6.Titratable acidity increased from 0.32% to 0.73% on day 5. Inversely, the pH of Mkarangodecreased sharply from 6.64 to 3.64 on day 5 and slightly increased on the last day of fermentation. The microbial status of finished fermented maize based products is predominated by Lactobacilli and their isolates are predominantly Lactobacilli especially Lactobacillus fermentum andLactobacillus Plantarumthough further molecular tests are needed to confirm the species.


2019 ◽  
Vol 2 (1) ◽  
pp. 67
Author(s):  
Milena Dimitrova ◽  
Galin Ivanov ◽  
Kiril Mihalev ◽  
Alexander Slavchev ◽  
Ivelina Ivanova ◽  
...  

The antimicrobial activity of polyphenol-enriched extracts from industrial plant by-products (strawberry and bilberry press residues and distilled rose petals) against probiotic lactic acid bacteria (Lactobacillus delbrueckii subsp. bulgaricus – S10 and S19; Lactobacillus rhamnosus – YW and S25; Lactobacillus gasseri – S20; Streptococcus thermophilus – S13 and S32) was investigated. The minimum inhibitory concentration (MIC) in most strains tested was found to be relatively high (from 6.25 mg.mL-1 to 12.50 mg.mL-1). The maximum concentration of polyphenols without inhibitory effect (MCWI) ranges from 0.390mg.mL-1 to 0.781mg.mL-1. The results obtained in the present study showed that among the tested lactic acid bacteria Lactobacillus delbrueckii subsp. bulgaricus – S19, Lactobacillus rhamnosus – YW and Streptococcus thermophilus – S13 had the best growth characteristics in polyphenol-enriched culture medium. These strains had the highest MIC and MCWI values and could be used as starter cultures for polyphenol-fortified fermented milks. Practical applications: The use of polyphenol-enriched extracts from industrial plant by-products (waste) – distilled rose petals (by-products of rose oil production) and strawberry and bilberry press residues (by-products of fruit juice production) contribute for improving the economic effect and for solving environmental problems in food industry. Development of functional fermented milks with combination of probiotic starter cultures and polyphenol extracts is current and perspective direction of food industry.


2019 ◽  
Vol 8 (3) ◽  
pp. 103
Author(s):  
Calvince Anino ◽  
Arnold Onyango ◽  
Samuel Imathiu ◽  
Julius Maina

Fermented foods have in recent times attracted consumer interest mainly due to perceived health benefits of probiotic microorganisms. This study characterized changes in the concentrations of selected B-complex vitamins and oligosaccharides of common bean milk during fermentation by a common dairy starter culture, YF L-903 (Streptococcus thermophilus + Lactobacillus Bulgaricus subs Debulgaricus), and three probiotic cultures namely ABT (Lactobacillus acidophilus La-5 + Bifidobacterium animalis Bb-12 + Streptococcus thermophilus), Yoba (Lactobacillus rhamnosus yoba + Streptococcus thermophilus), and Yoba Fiti (Lactobacillus rhamnosus GR1 + Streptococcus thermophilus). Bean milk was prepared from three common bean varieties. It was found that, apart from thiamine (vitamin B1) and riboflavin (vitamin B2), fermentation with each of the mixed cultures caused significant increase in the vitamin B complex. Significant reductions (p<0.05) in the oligosaccharides concentration of the bean milks were observed upon fermentation. Highest reduction in the oligosaccharide sugars of 77.8% was found in milk from pinto bean variety fermented with ABT culture. These findings suggest that LAB probiotic cultures have a potential for improving biosynthesis of vitamins and removal of the verbascose, stachyose and raffinose oligosaccharides, thus making the product more digestible and the nutrients more bioavailable.


Author(s):  
Emmanuel Ohene Afoakwa ◽  
Philip Roger Aidoo

Spontaneous lactic acid fermentation is an important process in cereal processing. It is applied to develop and enhance taste and flavour, modify texture and improve the microbial safety of foods. When applied with nixtamalization to maize, it is expected to further improve the functionality, improve nutritional quality and provide an alternative maize-based ingredient. This study was carried out to determine the extent to which fermentation could influence the physico-chemical, functional and textural properties of nixtamalized maize. A 2 x 3 x 3 factorial experimental design with fermentation medium (water, coconut water), fermentation time (0, 24, 48 hours) and blends composition (0:100, 50:50, 100:0 steeped:nixtamalized maize) was performed. The blends were fermented for the specific times and analysed for pH, titratable acidity, water absorption, colour and texture. Traditional maize dough facilitated the fermentation process by acting as a starter culture to produce lower pH and higher acidity in the steeped:nixtamalized maize blends. The fermentation time significantly (p<0.05) influenced the pH, titratable acidity, water absorption capacity, colour and texture of the samples. The pH of all the blends decreased from 6.24 to 4.22 with a corresponding increase in titratable acidity from 0.009 to 0.036 g Lactic/100g sample during fermentation. There was however no significant (p<0.05) difference in the effect of fermentation medium on these indices. The samples with a higher percentage of nixtamalized maize had a deeper yellow colour, that is lower L – value (lightness) and higher b-values (yellowness) than the non- nixtamalized maize and this increased further with fermentation. The texture of the blends of steeped – nixtamalized maize generally decreased with increasing fermentation time for all samples fermented in water as well as in coconut water, however, the texture of the blends of steeped: nixtamalized maize for samples fermented in coconut water had relatively higher but comparable textural values. Maize can therefore be nixtamalized and fermented using both water and coconut water to effectively produce adequate souring or acids resulting in improved physico-chemical, functional and textural quality characteristics required for the processing of traditional fermented maize products.


Sign in / Sign up

Export Citation Format

Share Document