scholarly journals Testing Noncommutativity-Like Model as a Galactic Density Profile

Galaxies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 17
Author(s):  
Juan Ancona-Flores ◽  
Alberto Hernández-Almada ◽  
Miguel García-Aspeitia

Noncommutative-like model (NC-like) is an interesting alternative inspired by string theory to understand and describe the velocity rotation curves of galaxies without the inclusion of dark matter particles. In a natural way, a Gaussian density profile emerges and is characterized by a parameter θ, called the NC-like parameter. Hence we aim to confront the NC-like model with a galaxy sample of the Spitzer Photometry and Accurate Rotation Curves (SPARC) catalog to constrain the model parameters and compare statistically with the Einasto density profile using the Akaike and Bayesian information criteria. According to our results, some galaxies prefer the NC-like over the Einasto model while others do not support NC-like.

2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Maribel Hernández ◽  
Ana A. Avilez ◽  
Tonatiuh Matos

Abstract We study the possibility that large-scale magnetic fields observed in galaxies could be produced by a dark matter halo made of charged ultra-light bosons, that arise as excitations of a complex scalar field described by the Klein–Gordon equation with local U(1) symmetry which introduces electromagnetic fields that minimally couple to the complex scalar current and act as dark virtual photons. These virtual photons have an unknown coupling constant with real virtual photons. We constrain the final interaction using the observed magnetic fields in galaxies. We use classical solutions of the Klein–Gordon–Maxwell system to describe the density profile of dark matter and magnetic fields in galaxies. We consider two cases assuming spherical and dipolar spatial symmetries. For the LSB spherical galaxy F563-V2, we test the sensitivity of the predicted rotation curves in the charged Scalar Field Dark Matter (cSFDM) model to variations of the electromagnetic coupling and using the Fisher matrix error estimator, we set a constraint over that coupling by requiring that theoretical rotation curves lay inside the $$1\sigma $$1σ confidence region of observational data. We find that cSFDM haloes generate magnetic fields of the order of $$\mu G$$μG and reproduce the observed rotation curves of F563-V2 if the ultra-light boson has a charge $$\sim <10^{-13}e$$∼<10-13e for the monopole-like density profile and $$\sim <10^{-14}e$$∼<10-14e for the dipole-like one.


2019 ◽  
Vol 490 (3) ◽  
pp. 2977-3024 ◽  
Author(s):  
M Korsaga ◽  
B Epinat ◽  
P Amram ◽  
C Carignan ◽  
P Adamczyk ◽  
...  

Abstract We present the mass models of 31 spiral and irregular nearby galaxies obtained using hybrid rotation curves (RCs) combining high-resolution GHASP Fabry–Perot H α RCs and extended WHISP H i ones together with 3.4 $\mu$m WISE photometry. The aim is to compare the dark matter (DM) halo properties within the optical radius using only H α RCs with the effect of including and excluding the mass contribution of the neutral gas component, and when using H i or hybrid RCs. Pseudo-isothermal (ISO) core and Navarro–Frenk–White (NFW) cuspy DM halo profiles are used with various fiducial fitting procedures. Mass models using H α RCs including or excluding the H i gas component provide compatible disc M/L. The correlations between DM halo and baryon parameters do not strongly depend on the RC. Clearly, the differences between the fitting procedures are larger than between the different data sets. Hybrid and H i RCs lead to higher M/L values for both ISO and NFW best-fitting models but lower central densities for ISO haloes and higher concentration for NFW haloes than when using H α RCs only. The agreement with the mass model parameters deduced using hybrid RCs, considered as a reference, is better for H i than for H α RCs. ISO density profiles better fit the RCs than the NFW ones, especially when using H α or hybrid RCs. Halo masses at the optical radius determined using the various data sets are compatible even if they tend to be overestimated with H α RCs. Hybrid RCs are thus ideal to study the mass distribution within the optical radius.


2004 ◽  
Vol 220 ◽  
pp. 335-336
Author(s):  
Erik Zackrisson ◽  
Nils Bergvall

We use optical, long-slit rotation curves to derive the slope of the central density profile in three blue disk galaxies with very faint central surface brightness values. We find the result to be in conflict with current cold dark matter predictions and to lend further support for pseudo-isothermal spheres as superior models for the dark halos of galaxies.


2004 ◽  
Vol 220 ◽  
pp. 371-372 ◽  
Author(s):  
Kristine Spekkens ◽  
Riccardo Giovanelli

We derive inner dark matter halo density profile slopes for a sample of 200 dwarf galaxies by inverting rotation curves obtained from high-quality, long-slit optical spectra. Using simulations to assess the impact of long-slit observing and data processing errors on our measurements, we conclude that our observations are consistent with the cuspy halos predicted by the CDM paradigm.


2009 ◽  
Vol 24 (40) ◽  
pp. 3239-3248 ◽  
Author(s):  
YU. F. PIROGOV

In the framework of the unimodular metagravity, with the scalar graviton/graviscalar dark matter, a regular anomalous one-parameter solution to the static spherically symmetric metagravity equations in empty space is found. The solution presents a smooth graviscalar halo, with a finite central density profile, qualitatively reproducing the asymptotically flat rotation curves of galaxies. To refine the description the study of the axisymmetric case in the presence of luminous matter is required.


1996 ◽  
Vol 171 ◽  
pp. 175-178 ◽  
Author(s):  
A. Burkert

Some dwarf galaxies have HI rotation curves that are completely dominated by a surrounding dark matter (DM) halo (e.g. Carignan & Freeman 1988). These objects represent ideal candidates for an investigation of the density structure of low-mass DM halos as the uncertainties resulting from the subtraction of the visible component are small, even in the innermost regions. Flores & Primack (1994) and Moore (1994) compared the observed DM rotation curves with the profiles, predicted from cosmological cold dark matter (CDM) calculations. They found an interesting discrepancy: whereas the calculations lead to a DM density distribution which diverges as ρ ∼ r−1 in the inner parts, the observed rotation curves indicate shallow DM cores which can be described by an isothermal density profile with finite central density.


1983 ◽  
Vol 100 ◽  
pp. 145-146
Author(s):  
A. H. Nelson ◽  
T. Matsuda ◽  
T. Johns

Numerical calculations of spiral shocks in the gas discs of galaxies (1,2,3) usually assume that the disc is flat, i.e. the gas motion is purely horizontal. However there is abundant evidence that the discs of galaxies are warped and corrugated (4,5,6) and it is therefore of interest to consider the effect of the consequent vertical motion on the structure of spiral shocks. If one uses the tightly wound spiral approximation to calculate the gas flow in a vertical cut around a circular orbit (i.e the ⊝ -z plane, see Nelson & Matsuda (7) for details), then for a gas disc with Gaussian density profile in the z-direction and initially zero vertical velocity a doubly periodic spiral potential modulation produces the steady shock structure shown in Fig. 1. The shock structure is independent of z, and only a very small vertical motion appears with anti-symmetry about the mid-plane.


Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 75
Author(s):  
Richard Pincak ◽  
Alexander Pigazzini ◽  
Saeid Jafari ◽  
Cenap Ozel

The main purpose of this paper is to show and introduce some new interpretative aspects of the concept of “emergent space” as geometric/topological approach in the cosmological field. We will present some possible applications of this theory, among which the possibility of considering a non-orientable wormhole, but mainly we provide a topological interpretation, using this new approach, to M-Theory and String Theory in 10 dimensions. Further, we present some conclusions which this new interpretation suggests, and also some remarks considering a unifying approach between strings and dark matter. The approach shown in the paper considers that reality, as it appears to us, can be the “emerging” part of a more complex hidden structure. Pacs numbers: 11.25.Yb; 11.25.-w; 02.40.Ky; 02.40.-k; 04.50.-h; 95.35.+d.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Marc S. Seigar

We investigate the dark matter halo density profile of M33. We find that the HI rotation curve of M33 is best described by an NFW dark matter halo density profile model, with a halo concentration of and a virial mass of . We go on to use the NFW concentration of M33, along with the values derived for other galaxies (as found in the literature), to show that correlates with both spiral arm pitch angle and supermassive black hole mass.


2012 ◽  
Vol 21 (11) ◽  
pp. 1242002 ◽  
Author(s):  
PRITI MISHRA ◽  
TEJINDER P. SINGH

Flat galaxy rotation curves and the accelerating Universe both imply the existence of a critical acceleration, which is of the same order of magnitude in both the cases, in spite of the galactic and cosmic length scales being vastly different. Yet, it is customary to explain galactic acceleration by invoking gravitationally bound dark matter, and cosmic acceleration by invoking a "repulsive" dark energy. Instead, might it not be the case that the flatness of rotation curves and the acceleration of the Universe have a common cause? In this essay we propose a modified theory of gravity. By applying the theory on galactic scales we demonstrate flat rotation curves without dark matter, and by applying it on cosmological scales we demonstrate cosmic acceleration without dark energy.


Sign in / Sign up

Export Citation Format

Share Document