scholarly journals The Effect of DNA Topology on Observed Rates of R-Loop Formation and DNA Strand Cleavage by CRISPR Cas12a

Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 169 ◽  
Author(s):  
Kara van Aelst ◽  
Carlos Martínez-Santiago ◽  
Stephen Cross ◽  
Mark Szczelkun

Here we explored the mechanism of R-loop formation and DNA cleavage by type V CRISPR Cas12a (formerly known as Cpf1). We first used a single-molecule magnetic tweezers (MT) assay to show that R-loop formation by Lachnospiraceae bacterium ND2006 Cas12a is significantly enhanced by negative DNA supercoiling, as observed previously with Streptococcus thermophilus DGCC7710 CRISPR3 Cas9. Consistent with the MT data, the apparent rate of cleavage of supercoiled plasmid DNA was observed to be >50-fold faster than the apparent rates for linear DNA or nicked circular DNA because of topology-dependent differences in R-loop formation kinetics. Taking the differences into account, the cleavage data for all substrates can be fitted with the same apparent rate constants for the two strand-cleavage steps, with the first event >15-fold faster than the second. By independently following the ensemble cleavage of the non-target strand (NTS) and target strand (TS), we could show that the faster rate is due to NTS cleavage, the slower rate due to TS cleavage, as expected from previous studies.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bo Zhang ◽  
Diyin Luo ◽  
Yu Li ◽  
Vanja Perčulija ◽  
Jing Chen ◽  
...  

AbstractCas12i is a newly identified member of the functionally diverse type V CRISPR-Cas effectors. Although Cas12i has the potential to serve as genome-editing tool, its structural and functional characteristics need to be investigated in more detail before effective application. Here we report the crystal structures of the Cas12i1 R-loop complexes before and after target DNA cleavage to elucidate the mechanisms underlying target DNA duplex unwinding, R-loop formation and cis cleavage. The structure of the R-loop complex after target DNA cleavage also provides information regarding trans cleavage. Besides, we report a crystal structure of the Cas12i1 binary complex interacting with a pseudo target oligonucleotide, which mimics target interrogation. Upon target DNA duplex binding, the Cas12i1 PAM-interacting cleft undergoes a remarkable open-to-closed adjustment. Notably, a zipper motif in the Helical-I domain facilitates unzipping of the target DNA duplex. Formation of the 19-bp crRNA-target DNA strand heteroduplex in the R-loop complexes triggers a conformational rearrangement and unleashes the DNase activity. This study provides valuable insights for developing Cas12i1 into a reliable genome-editing tool.


2021 ◽  
Author(s):  
Martin Pacesa ◽  
Martin Jinek

Cas9 is a CRISPR-associated endonuclease capable of RNA-guided, site-specific DNA cleavage. The programmable activity of Cas9 has been widely utilized for genome editing applications. Despite extensive studies, the precise mechanism of target DNA binding and on-/off-target discrimination remains incompletely understood. Here we report cryo-EM structures of intermediate binding states of Streptococcus pyogenes Cas9 that reveal domain rearrangements induced by R-loop propagation and PAM-distal duplex positioning. At early stages of binding, the Cas9 REC2 and REC3 domains form a positively charged cleft that accommodates the PAM-distal duplex of the DNA substrate. Target hybridisation past the seed region positions the guide-target heteroduplex into the central binding channel and results in a conformational rearrangement of the REC lobe. Extension of the R-loop to 16 base pairs triggers the relocation of the HNH domain towards the target DNA strand in a catalytically incompetent conformation. The structures indicate that incomplete target strand pairing fails to induce the conformational displacements necessary for nuclease domain activation. Our results establish a structural basis for target DNA-dependent activation of Cas9 that advances our understanding of its off-target activity and will facilitate the development of novel Cas9 variants and guide RNA designs with enhanced specificity and activity.


2021 ◽  
Author(s):  
Pierre Aldag ◽  
Fabian Welzel ◽  
Leonhard Jakob ◽  
Andreas Schmidbauer ◽  
Marius Rutkauskas ◽  
...  

CRISPR-Cas9 is a ribonucleoprotein complex that sequence-specifically binds and cleaves double-stranded DNA. Wildtype Cas9 as well as its nickase and cleavage-incompetent mutants have been used in various biological techniques due to their versatility and programmable specificity. Cas9 has been shown to bind very stably to DNA even after cleavage of the individual DNA strands, inhibiting further turnovers and considerably slowing down in-vivo repair processes. This poses an obstacle in genome editing applications. Here, we employed single-molecule magnetic tweezers to investigate the binding stability of different S. pyogenes Cas9 variants after cleavage by challenging them with supercoiling. We find that different release mechanisms occur depending on which DNA strand is cleaved. After non-target strand cleavage, supercoils are immediately but slowly released by swiveling of the non-target strand around the DNA with friction. Consequently, Cas9 and its non-target strand nicking mutant stay stably bound to the DNA for many hours even at elevated torsional stress. After target-strand cleavage, supercoils are only removed after the collapse of the R-loop. We identified several states with different stabilities of the R-loop. Most importantly, we find that the post-cleavage state of Cas9 exhibits a higher stability compared to the pre-cleavage state. This suggests that Cas9 has evolved to remain tightly bound to its cut target.


2021 ◽  
Author(s):  
Mohsin M Naqvi ◽  
Laura Lee ◽  
Oscar E Torres Montaguth ◽  
Mark Szczelkun

CRISPR-Cas12a has been widely used for genome editing and diagnostic applications, yet it is not fully understood how RNA-guided DNA recognition activates the sequential cleavage of the non-target strand (NTS) followed by the target strand (TS). Here we used singlemolecule magnetic tweezers microscopy, ensemble gel-based assays and nanopore sequencing to explore the coupling of DNA unwinding and cleavage. In addition to dynamic R-loop formation, we also directly observed transient dsDNA unwinding downstream of the 20 bp DNA:RNA hybrid and, following NTS cleavage and prior to TS cleavage, formation of a hyperstable "clamped" Cas12a-DNA intermediate resistant to DNA twisting. Alanine substitution of a conserved aromatic amino acid "gate" in the REC2 domain that normally caps the heteroduplex produced more frequent and extended downstream DNA breathing, a longer-lived twist-resistant state, and a 16-fold faster rate of TS cleavage. We suggest that both breathing and clamping events, regulated by the gate and by NTS cleavage, deliver the unwound TS to the RuvC nuclease and result from previously described REC2 and NUC domain motions.


2020 ◽  
Author(s):  
Grace Mullally ◽  
Kara van Aelst ◽  
Mohsin M. Naqvi ◽  
Fiona M. Diffin ◽  
Tautvydas Karvelis ◽  
...  

A key aim in exploiting CRISPR-Cas is the engineering of gRNA to introduce additional functionalities, ranging from small nucleotide changes that increase efficiency of on-target binding to the inclusion of large functional RNA aptamers and ribonucleoproteins (RNPs. Interactions between gRNA and Cas9 are crucial for RNP complex assembly but several distinct regions of the gRNA are amenable to modification. Using a library of modified gRNAs, we used in vitro ensemble and single-molecule assays to assess the impact of RNA structural alterations on RNP complex formation, R-loop dynamics, and endonuclease activity. Our results indicate that R-loop formation and DNA cleavage activity are essentially unaffected by gRNA modifications of the Upper Stem, first Hairpin and 3’ end. In contrast, 5’ additions of only two or three nucleotides reduced R-loop formation and cleavage activity of the RuvC domain relative to a single nucleotide addition. Such gRNA modifications are a common by-product of in vitro transcribed gRNA. We also observed that addition of a 20 nt RNA hairpin to the 5’ end supported formation of a stable ~9 bp R-loop that could not activate DNA cleavage. These observations will assist in successful gRNA design.


2017 ◽  
Author(s):  
Stefano Stella ◽  
Pablo Alcón ◽  
Guillermo Montoya

AbstractCpf1 is a single RNA-guided endonuclease of class 2 type V CRISPR-Cas system, emerging as a powerful genome editing tool 1,2. To provide insight into its DNA targeting mechanism, we have determined the crystal structure of Francisella novicida Cpf1 (FnCpf1) in complex with the triple strand R-loop formed after target DNA cleavage. The structure reveals a unique machinery for target DNA unwinding to form a crRNA-DNA hybrid and a displaced DNA strand inside FnCpf1. The protospacer adjacent motif (PAM) is recognised by the PAM interacting (PI) domain. In this domain, the conserved K667, K671 and K677 are arranged in a dentate manner in a loop-lysine helix-loop motif (LKL). The helix is inserted at a 45° angle to the dsDNA longitudinal axis. Unzipping of the dsDNA in a cleft arranged by acidic and hydrophobic residues facilitates the hybridization of the target DNA strand with crRNA. K667 initiates unwinding by pushing away the guanine after the PAM sequence of the dsDNA. The PAM ssDNA is funnelled towards the nuclease site, which is located 70 Å away, through a hydrophobic protein cavity with basic patches that interact with the phosphate backbone. In this catalytically active conformation the PI and the helix-loop-helix (HLH) motif in the REC1 domain adopt a “rail shape” and “flap-on” conformations, channelling the PAM strand into the cavity. A steric barrier between the RuvC-II and REC1 domains forms a “septum” that separates the displaced PAM strand and the crRNA-DNA hybrid, avoiding re-annealing of the DNA. Mutations in key residues reveal a novel mechanism to determine the DNA product length, thereby linking the PAM and DNAase sites. Our study reveals a singular working model of RNA-guided DNA cleavage by Cpf1, opening up new avenues for engineering this genome modification system2-4.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Yeonee Seol ◽  
Gábor M Harami ◽  
Mihály Kovács ◽  
Keir C Neuman

RecQ helicases promote genomic stability through their unique ability to suppress illegitimate recombination and resolve recombination intermediates. These DNA structure-specific activities of RecQ helicases are mediated by the helicase-and-RNAseD like C-terminal (HRDC) domain, via unknown mechanisms. Here, employing single-molecule magnetic tweezers and rapid kinetic approaches we establish that the HRDC domain stabilizes intrinsic, sequence-dependent, pauses of the core helicase (lacking the HRDC) in a DNA geometry-dependent manner. We elucidate the core unwinding mechanism in which the unwinding rate depends on the stability of the duplex DNA leading to transient sequence-dependent pauses. We further demonstrate a non-linear amplification of these transient pauses by the controlled binding of the HRDC domain. The resulting DNA sequence- and geometry-dependent pausing may underlie a homology sensing mechanism that allows rapid disruption of unstable (illegitimate) and stabilization of stable (legitimate) DNA strand invasions, which suggests an intrinsic mechanism of recombination quality control by RecQ helicases.


2021 ◽  
Vol 118 (49) ◽  
pp. e2113747118
Author(s):  
Heyjin Son ◽  
Jaeil Park ◽  
Injoo Hwang ◽  
Youngri Jung ◽  
Sangsu Bae ◽  
...  

CRISPR-Cas12a, an RNA-guided DNA targeting endonuclease, has been widely used for genome editing and nucleic acid detection. As part of the essential processes for both of these applications, the two strands of double-stranded DNA are sequentially cleaved by a single catalytic site of Cas12a, but the mechanistic details that govern the generation of complete breaks in double-stranded DNA remain to be elucidated. Here, using single-molecule fluorescence resonance energy transfer assay, we identified two conformational intermediates that form consecutively following the initial cleavage of the nontarget strand. Specifically, these two intermediates are the result of further unwinding of the target DNA in the protospacer-adjacent motif (PAM)–distal region and the subsequent binding of the target strand to the catalytic site. Notably, the PAM-distal DNA unwound conformation was stabilized by Mg2+ ions, thereby significantly promoting the binding and cleavage of the target strand. These findings enabled us to propose a Mg2+-dependent kinetic model for the mechanism whereby Cas12a achieves cleavage of the target DNA, highlighting the presence of conformational rearrangements for the complete cleavage of the double-stranded DNA target.


2020 ◽  
Author(s):  
Nicholas A. W. Bell ◽  
Philip J. Haynes ◽  
Katharina Brunner ◽  
Taiana Maia de Oliveira ◽  
Maria Flocco ◽  
...  

ABSTRACTPoly(ADP-ribose) polymerase 1 (PARP1) is an abundant nuclear enzyme that plays important roles in DNA repair, chromatin organization and transcription regulation. Although binding and activation of PARP1 by DNA damage sites has been extensively studied, little is known about how PARP1 binds to long stretches of undamaged DNA and how it could shape chromatin architecture. Here, using a combination of single-molecule techniques including magnetic tweezers and atomic force microscopy, we show that PARP1 binds and condenses undamaged, kilobase-length DNA subject to sub-picoNewton mechanical forces. Decondensation by high force proceeds through a series of discrete increases in extension, indicating that PARP1 stabilizes loops of DNA. This model is supported by DNA braiding experiments which show that PARP1 can bind at the intersection of two separate DNA molecules. PARP inhibitors do not affect the level of condensation of undamaged DNA, but act to block condensation reversal for damaged DNA in the presence of NAD+. Our findings establish a mechanism for PARP1 in the organization of chromatin structure.


2021 ◽  
Author(s):  
Willem Vanderlinden ◽  
Enrico Skoruppa ◽  
Pauline J. Kolbeck ◽  
Enrico Carlon ◽  
Jan Lipfert

DNA supercoiling is a key regulatory mechanism that orchestrates DNA readout, recombination, and genome maintenance. DNA-binding proteins often mediate these processes by bringing two distant DNA sites together, thereby inducing (transient) topological domains. In order to understand the dynamics and molecular architecture of protein induced topological domains in DNA, quantitative and time-resolved approaches are required. Here we present a methodology to determine the size and dynamics of topological domains in supercoiled DNA in real-time and at the single molecule level. Our approach is based on quantifying the extension fluctuations -in addition to the mean extension- of supercoiled DNA in magnetic tweezers. Using a combination of high-speed magnetic tweezers experiments, Monte Carlo simulations, and analytical theory, we map out the dependence of DNA extension fluctuations as a function of supercoiling density and external force. We find that in the plectonemic regime the extension variance increases linearly with increasing supercoiling density and show how this enables us to determine the formation and size of topological domains. In addition, we demonstrate how transient (partial) dissociation of DNA bridging proteins results in dynamic sampling of different topological states, which allows us to deduce the torsional stiffness of the plectonemic state and the kinetics of protein-plectoneme interactions. We expect our approach to enable quantification of the dynamics and reaction pathways of DNA processing enzymes and motor proteins, in the context of physiologically relevant forces and supercoiling densities.


Sign in / Sign up

Export Citation Format

Share Document