scholarly journals Identification of Potential Genes Responsible for Thermotolerance in Wheat under High Temperature Stress

Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 174 ◽  
Author(s):  
Peipei Su ◽  
Cai Jiang ◽  
Hao Qin ◽  
Rui Hu ◽  
Jialu Feng ◽  
...  

Wheat, a major worldwide staple food crop, is relatively sensitive to a changing environment, including high temperature. The comprehensive mechanism of heat stress response at the molecular level and exploitation of candidate tolerant genes are far from enough. Using transcriptome data, we analyzed the gene expression profiles of wheat under heat stress. A total of 1705 and 17 commonly differential expressed genes (DEGs) were identified in wheat grain and flag leaf, respectively, through transcriptome analysis. Gene Ontology (GO) and pathway enrichment were also applied to illustrate the functions and metabolic pathways of DEGs involved in thermotolerance of wheat grain and flag leaf. Furthermore, our data suggest that there may be a more complex molecular mechanism or tighter regulatory network in flag leaf than in grain under heat stress over time, as less commonly DEGs, more discrete expression profiles of genes (principle component analysis) and less similar pathway response were observed in flag leaf. In addition, we found that transcriptional regulation of zeatin, brassinosteroid and flavonoid biosynthesis pathways may play an important role in wheat’s heat tolerance. The expression changes of some genes were validated using quantitative real-time polymerase chain reaction and three potential genes involved in the flavonoid biosynthesis process were identified.

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhi-Fang Zuo ◽  
Wenbo He ◽  
Jing Li ◽  
Beixin Mo ◽  
Lin Liu

Small RNAs (sRNAs) are a class of non-coding RNAs that consist of 21–24 nucleotides. They have been extensively investigated as critical regulators in a variety of biological processes in plants. sRNAs include two major classes: microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis and functional pathways. Due to global warming, high-temperature stress has become one of the primary causes for crop loss worldwide. Recent studies have shown that sRNAs are involved in heat stress responses in plants and play essential roles in high-temperature acclimation. Genome-wide studies for heat-responsive sRNAs have been conducted in many plant species using high-throughput sequencing. The roles for these sRNAs in heat stress response were also unraveled subsequently in model plants and crops. Exploring how sRNAs regulate gene expression and their regulatory mechanisms will broaden our understanding of sRNAs in thermal stress responses of plant. Here, we highlight the roles of currently known miRNAs and siRNAs in heat stress responses and acclimation of plants. We also discuss the regulatory mechanisms of sRNAs and their targets that are responsive to heat stress, which will provide powerful molecular biological resources for engineering crops with improved thermotolerance.


2014 ◽  
Author(s):  
Kaiyuan Ji ◽  
Wenli Ma ◽  
Wenling Zheng

We chose yeast as a model organism to explore how eukaryotic cells respond to heat stress. This study provides details on the way yeast responds to temperature changes and is therefore an empirical reference for basic cell research and industrial fermentation of yeast. We use the Qlucore Omics Explorer (QOE) bioinformatics software to analyze the gene expression profiles of the heat stress from Gene Expression Omnibus (GEO). Genes and their expression are listed in heat maps, and the gene function is analyzed against the biological processes and pathways. We can find that the expression of genes changed over time after heat stress. Gene expression changed rapidly from 0 min to 60 min after heat shock, and gene expression stabilized between 60 min to 360 min. The yeast cells begin to adjust themselves to the high temperatures in terms of the level of gene expression at about 60 min. In all of the involved pathways and biological processes, those related to ribosome and nucleic acid metabolism declined in about 15?30 min and those related to starch and sucrose increased in the same time frame. Temperature can be a simple way to control the biological processes and pathways of cell.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 687
Author(s):  
Chan Seop Ko ◽  
Jin-Baek Kim ◽  
Min Jeong Hong ◽  
Yong Weon Seo

High-temperature stress during the grain filling stage has a deleterious effect on grain yield and end-use quality. Plants undergo various transcriptional events of protein complexity as defensive responses to various stressors. The “Keumgang” wheat cultivar was subjected to high-temperature stress for 6 and 10 days beginning 9 days after anthesis, then two-dimensional gel electrophoresis (2DE) and peptide analyses were performed. Spots showing decreased contents in stressed plants were shown to have strong similarities with a high-molecular glutenin gene, TraesCS1D02G317301 (TaHMW1D). QRT-PCR results confirmed that TaHMW1D was expressed in its full form and in the form of four different transcript variants. These events always occurred between repetitive regions at specific deletion sites (5′-CAA (Glutamine) GG/TG (Glycine) or (Valine)-3′, 5′-GGG (Glycine) CAA (Glutamine) -3′) in an exonic region. Heat stress led to a significant increase in the expression of the transcript variants. This was most evident in the distal parts of the spike. Considering the importance of high-molecular weight glutenin subunits of seed storage proteins, stressed plants might choose shorter polypeptides while retaining glutenin function, thus maintaining the expression of glutenin motifs and conserved sites.


2011 ◽  
Vol 168 (6) ◽  
pp. 585-593 ◽  
Author(s):  
Xiao Wang ◽  
Jian Cai ◽  
Dong Jiang ◽  
Fulai Liu ◽  
Tingbo Dai ◽  
...  

1975 ◽  
Vol 84 (3) ◽  
pp. 525-528 ◽  
Author(s):  
I. C. Onwueme ◽  
S. A. Adegoroye

SUMMARYSeeds of Amaranthus, melon, cowpea and tomato were planted in moist soil at 1, 4 or 7·5 cm depth and subjected to a heat stress of 45 °C for 10 h on the day of sowing (day 0), 1 day after sowing or 2 days after sowing. Seedling emergence was retarded by heat stress, the most drastic retardation being due to heat stress on day 1 for cowpea and tomato, day 2 for melon, and day 0 for Amaranthus. Emergence also decreased with increasing depth of sowing. The interaction of depth and heat stress was also significant in all cases, such that the delay in emergence due to heat stress tended to be greater with increasing depth of sowing. The agronomic significance of the results is discussed.


2020 ◽  
Author(s):  
S MukeshSankar ◽  
C. Tara Satyavathi ◽  
Sharmistha Barthakur ◽  
S.P Singh ◽  
Roshan Kumar ◽  
...  

AbstractEnvironmental stresses negatively influence survival, biomass and grain yield of most crops. Towards functionally clarifying the role of heat responsive genes in Pearl millet under high temperature stress, the present study were carried out using semi quantitative RT- PCR for transcript expression profiling of hsf and hsps in 8 different inbred lines at seedling stage, which was earlier identified as thermo tolerant/susceptible lines through initial screening for thermo tolerance using membrane stability index among 38 elite genotypes. Transcript expression pattern suggested existence of differential response among different genotypes in response to heat stress in the form of accumulation of heat shock responsive gene transcripts. Genotypes WGI 126, TT-1 and MS 841B responded positively towards high temperature stress for transcript accumulation for both Pgcp 70 and Pghsf and also had better growth under heat stress, whereas PPMI 69 showed the least responsiveness to transcript induction supporting the membrane stability index data for scoring thermotolerance, suggesting the efficacy of transcript expression profiling as a molecular based screening technique for identification of thermotolerant genes and genotypes at particular crop growth stages. As to demonstrate this, a full length cDNA of Pghsp 16.97 was cloned from the thermotolerant cultivar, WGI 126 and characterized for thermotolerance. The results of demonstration set forth the transcript profiling for heat tolerant genes can be a very useful technique for high throughput screening of tolerant genotypes at molecular level from large cultivar collections at seedling stage.


2019 ◽  
Vol 13 ((04) 2019) ◽  
pp. 578-587 ◽  
Author(s):  
Muhammed Alsamir ◽  
Nabil Ahmad ◽  
Vivi Arief ◽  
Tariq Mahmood ◽  
Richard Trethowan

Tomato is a mild season crop and high temperature stress impacts productivity negatively. However, the development of cultivars with improved heat tolerance is possible as genetic variability has been consistently reported. This study aimed to identify candidate genes that impact various traits under heat stress. Genome-wide association studies (GWAS) were conducted on a diverse set of 144 tomato genotypes collected from various germplasm centers and breeding programs. The genotypes were grown under control and heat stress in poly tunnels having mean temperatures of 30°C and 45°C for two seasons and phenotypic data were collected on seven agro-physiological traits. All individuals were genotyped withthe80K DArTseq platform using 31237 SNP markers. Data were analysed using a mixed model based on restricted maximum likelihood (REML). Pattern analysis of the phenotypic data showed five primary clusters each with genotypes from multiple origins. Based on the genotypic data, three wild tomato genotypes showed a degree of un-relatedness with the other materials as they were distantly located from the rest of the genotypes in the scatter plot. Control treatment data were used to ascertain markers that are exclusively important under high temperature stress. A large number of markers were significantly associated with various traits under heat stress. These included strong marker associations for number of inflorescence/plant (IPP), number of flowers/inflorescence (FPI), fresh fruit weight (FFrW), and electrolyte leakage (EL). High association with EL was found due to two SNPs 7858523|F|0-25:G>A-25:G>A and 4705224|F|0-60:C>G-60:C>G located on Chr 6. Other less pronounced marker-trait associations were observed for plant dry weight (PDW), and number of fruit/plant (FrPP).


2020 ◽  
Vol 47 (5) ◽  
pp. 440 ◽  
Author(s):  
Syed Adeel Zafar ◽  
Amjad Hameed ◽  
Muhammad Ashraf ◽  
Abdus Salam Khan ◽  
Zia-ul- Qamar ◽  
...  

Climatic variations have increased the occurrence of heat stress during critical growth stages, which negatively affects grain yield in rice. Plants adapt to harsh environments, and particularly high-temperature stress, by regulating their physiological and biochemical processes, which are key tolerance mechanisms. The identification of heat-tolerant rice genotypes and reliable selection indices are crucial for rice improvement programs. Here, we evaluated the response of a rice mutant population for high-temperature stress at the seedling and reproductive stages based on agronomic, physiological and molecular indices. Estimates of variance components revealed significant differences (P < 0.001) among genotypes, treatments and their interactions for almost all traits. The principal component analysis showed significant diversity among genotypes and traits under high-temperature stress. The mutant HTT-121 was identified as the most heat-tolerant mutant with higher grain yield, panicle fertility, cell membrane thermo-stability (CMTS) and antioxidant enzyme levels under heat stress. Various seedling-based morpho-physiological traits (leaf fresh weight, relative water contents, malondialdehyde, CMTS) and biochemical traits (superoxide dismutase, catalase and hydrogen peroxide) explained variations in grain yield that could be used as selection indices for heat tolerance in rice during early growth. Notably, heat-sensitive mutants accumulated reactive oxygen species, reduced catalase activity and upregulated OsSRFP1 expression under heat stress, suggesting their key roles in regulating heat tolerance in rice. The heat-tolerant mutants identified in this study could be used in breeding programs and to develop mapping populations to unravel the underlying genetic architecture for heat-stress adaptability.


Sign in / Sign up

Export Citation Format

Share Document