scholarly journals Genetic Epidemiology in Latin America: Identifying Strong Genetic Proxies for Complex Disease Risk Factors

Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 507
Author(s):  
Carolina Bonilla ◽  
Lara Novaes Baccarini

Epidemiology seeks to determine the causal effects of exposures on outcomes related to the health and wellbeing of populations. Observational studies, one of the most commonly used designs in epidemiology, can be biased due to confounding and reverse causation, which makes it difficult to establish causal relationships. In recent times, genetically informed methods, like Mendelian randomization (MR), have been developed in an attempt to overcome these disadvantages. MR relies on the association of genetic variants with outcomes of interest, where the genetic variants are proxies or instruments for modifiable exposures. Because genotypes are sorted independently and at random at the time of conception, they are less prone to confounding and reverse causation. Implementation of MR depends on, among other things, a strong association of the genetic variants with the exposure, which has usually been defined via genome-wide association studies (GWAS). Because GWAS have been most often carried out in European populations, the limited identification of strong instruments in other populations poses a major problem for the application of MR in Latin America. We suggest potential solutions that can be realized with the resources at hand and others that will have to wait for increased funding and access to technology.

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3083
Author(s):  
Lorena Alonso ◽  
Ignasi Morán ◽  
Cecilia Salvoro ◽  
David Torrents

The identification and characterisation of genomic changes (variants) that can lead to human diseases is one of the central aims of biomedical research. The generation of catalogues of genetic variants that have an impact on specific diseases is the basis of Personalised Medicine, where diagnoses and treatment protocols are selected according to each patient’s profile. In this context, the study of complex diseases, such as Type 2 diabetes or cardiovascular alterations, is fundamental. However, these diseases result from the combination of multiple genetic and environmental factors, which makes the discovery of causal variants particularly challenging at a statistical and computational level. Genome-Wide Association Studies (GWAS), which are based on the statistical analysis of genetic variant frequencies across non-diseased and diseased individuals, have been successful in finding genetic variants that are associated to specific diseases or phenotypic traits. But GWAS methodology is limited when considering important genetic aspects of the disease and has not yet resulted in meaningful translation to clinical practice. This review presents an outlook on the study of the link between genetics and complex phenotypes. We first present an overview of the past and current statistical methods used in the field. Next, we discuss current practices and their main limitations. Finally, we describe the open challenges that remain and that might benefit greatly from further mathematical developments.


2020 ◽  
Author(s):  
Pavel P Kuksa ◽  
Chia-Lun Lui ◽  
Wei Fu ◽  
Liming Qu ◽  
Yi Zhao ◽  
...  

Background: Alzheimer's disease (AD) genetic findings span progressively larger genome-wide association studies (GWASs) for various outcomes and populations. These genetic findings are obtained from a single GWAS, joint- or meta- analyses of multiple GWAS datasets. However, no single resource provides harmonized and searchable information on all AD genetic associations obtained from these analyses, nor linking the identified genetic variants and reported genes with other supporting functional genomic evidence. Methods: We created the Alzheimer's Disease Variant Portal (ADVP), which provides unified access to a uniquely extensive collection of high-quality GWAS association results for AD. Records in ADVP are curated from the genome-wide significant and suggestive loci reported in AD genetics literature. ADVP contains curated results from all AD GWAS publications by Alzheimer's Disease Genetics Consortium (ADGC) since 2009 and AD GWAS publications identified from other public catalogs (GWAS catalog). Genetic association information was systematically extracted from these publications, harmonized, and organized into three types of tables. These tables included structured publication, variant, and association categories to ensure consistent representation of all AD genetic findings. All extracted AD genetic associations were further annotated and integrated with NIAGADS Genomics DB in order to provide extensive biological and functional genomics annotations. Results: Currently, ADVP contains 6,990 AD-association records curated from >200 AD GWAS publications corresponding to >900 unique genomic loci and >1,800 unique genetic variants. The ADVP collection contains genetic findings from >80 cohorts and across various populations, including Caucasians, Hispanics, African-Americans, and Asians. Of all the association records, 46% are disease-risk, 13% are related to expression quantitative trait analyses, and 27% are related to AD endophenotypes and neuropathology. ADVP web interface allows accessing AD association records by individual variants, genes, publications, genomic regions of interest, and genome-wide interactive variant views. ADVP is integrated with the NIAGADS Alzheimer's Genomics Database. Researchers can explore additional biological annotations at the genetic variant or gene level and view cross-reference functional genomics evidence provided by other public resources. Conclusions: ADVP is the largest, most up-to-date, and comprehensive literature-derived collection of AD genetic associations. All records have been systematically curated, harmonized, and comprehensively annotated. ADVP is freely accessible at https://advp.niagads.org/.


Author(s):  
V. E. Golimbet ◽  
A. K. Golov ◽  
N. V. Kondratyev

Genome-wide association studies (GWASs) discovered multiple genetic variants associated with schizophrenia. Te next step (post-GWAS analysis) is aimed at identifying the causal genetic variants and biological mechanisms underlying the associations with disease risk. Te following strategies are considered: the study of transcriptional regulation in neuronal human cells and the use of epigenomic information for searching for regulatory elements involved in the pathogenesis of schizophrenia. Te frst strategy includes identifcation of neuronal enhancers, mapping of potential target genes and functional confrmation of enhancer-promoter interactions. Te second approach is focused on the identifcation of transcriptional factors, which appear to be master regulators of expression.


2016 ◽  
Author(s):  
Giuseppe Gallone ◽  
Wilfried Haerty ◽  
Giulio Disanto ◽  
Sreeram Ramagopalan ◽  
Chris P. Ponting ◽  
...  

AbstractLarge numbers of statistically significant associations between sentinel SNPs and case-control status have been replicated by genome-wide association studies. Nevertheless, few underlying molecular mechanisms of complex disease are currently known. We investigated whether variation in binding of a transcription factor, the vitamin D receptor (VDR) whose activating ligand vitamin D has been proposed as a modifiable factor in multiple disorders, could explain any of these associations. VDR modifies gene expression by binding DNA as a heterodimer with the Retinoid X receptor (RXR).We identified 43,332 genetic variants significantly associated with altered VDR binding affinity (VDR-BVs) using a high-resolution (ChIP-exo) genome-wide analysis of 27 HapMap lymphoblastoid cell lines. VDR-BVs are enriched in consensus RXR::VDR binding motifs, yet most fell outside of these motifs, implying that genetic variation often affects binding affinity only indirectly. Finally, we compared 341 VDR-BVs replicating by position in multiple individuals against background sets of variants lying within VDR-binding regions that had been matched in allele frequency and were independent with respect to linkage disequilibrium. In this stringent test, these replicated VDR-BVs were significantly (q < 0.1) and substantially (> 2-fold) enriched in genomic intervals associated with autoimmune and other diseases, including inflammatory bowel disease, Crohn’s disease and rheumatoid arthritis. The approach’s validity is underscored by RXR::VDR motif sequence being predictive of binding strength and being evolutionarily constrained.Our findings are consistent with altered RXR::VDR binding contributing to immunity-related diseases. Replicated VDR-BVs associated with these disorders could represent causal disease risk alleles whose effect may be modifiable by vitamin D levels.


2019 ◽  
Vol 26 (34) ◽  
pp. 6207-6221 ◽  
Author(s):  
Innocenzo Rainero ◽  
Alessandro Vacca ◽  
Flora Govone ◽  
Annalisa Gai ◽  
Lorenzo Pinessi ◽  
...  

Migraine is a common, chronic neurovascular disorder caused by a complex interaction between genetic and environmental risk factors. In the last two decades, molecular genetics of migraine have been intensively investigated. In a few cases, migraine is transmitted as a monogenic disorder, and the disease phenotype cosegregates with mutations in different genes like CACNA1A, ATP1A2, SCN1A, KCNK18, and NOTCH3. In the common forms of migraine, candidate genes as well as genome-wide association studies have shown that a large number of genetic variants may increase the risk of developing migraine. At present, few studies investigated the genotype-phenotype correlation in patients with migraine. The purpose of this review was to discuss recent studies investigating the relationship between different genetic variants and the clinical characteristics of migraine. Analysis of genotype-phenotype correlations in migraineurs is complicated by several confounding factors and, to date, only polymorphisms of the MTHFR gene have been shown to have an effect on migraine phenotype. Additional genomic studies and network analyses are needed to clarify the complex pathways underlying migraine and its clinical phenotypes.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shuquan Rao ◽  
Yao Yao ◽  
Daniel E. Bauer

AbstractGenome-wide association studies (GWAS) have uncovered thousands of genetic variants that influence risk for human diseases and traits. Yet understanding the mechanisms by which these genetic variants, mainly noncoding, have an impact on associated diseases and traits remains a significant hurdle. In this review, we discuss emerging experimental approaches that are being applied for functional studies of causal variants and translational advances from GWAS findings to disease prevention and treatment. We highlight the use of genome editing technologies in GWAS functional studies to modify genomic sequences, with proof-of-principle examples. We discuss the challenges in interrogating causal variants, points for consideration in experimental design and interpretation of GWAS locus mechanisms, and the potential for novel therapeutic opportunities. With the accumulation of knowledge of functional genetics, therapeutic genome editing based on GWAS discoveries will become increasingly feasible.


Author(s):  
Jianhua Wang ◽  
Dandan Huang ◽  
Yao Zhou ◽  
Hongcheng Yao ◽  
Huanhuan Liu ◽  
...  

Abstract Genome-wide association studies (GWASs) have revolutionized the field of complex trait genetics over the past decade, yet for most of the significant genotype-phenotype associations the true causal variants remain unknown. Identifying and interpreting how causal genetic variants confer disease susceptibility is still a big challenge. Herein we introduce a new database, CAUSALdb, to integrate the most comprehensive GWAS summary statistics to date and identify credible sets of potential causal variants using uniformly processed fine-mapping. The database has six major features: it (i) curates 3052 high-quality, fine-mappable GWAS summary statistics across five human super-populations and 2629 unique traits; (ii) estimates causal probabilities of all genetic variants in GWAS significant loci using three state-of-the-art fine-mapping tools; (iii) maps the reported traits to a powerful ontology MeSH, making it simple for users to browse studies on the trait tree; (iv) incorporates highly interactive Manhattan and LocusZoom-like plots to allow visualization of credible sets in a single web page more efficiently; (v) enables online comparison of causal relations on variant-, gene- and trait-levels among studies with different sample sizes or populations and (vi) offers comprehensive variant annotations by integrating massive base-wise and allele-specific functional annotations. CAUSALdb is freely available at http://mulinlab.org/causaldb.


2019 ◽  
Author(s):  
Jing Yang ◽  
Amanda McGovern ◽  
Paul Martin ◽  
Kate Duffus ◽  
Xiangyu Ge ◽  
...  

AbstractGenome-wide association studies have identified genetic variation contributing to complex disease risk. However, assigning causal genes and mechanisms has been more challenging because disease-associated variants are often found in distal regulatory regions with cell-type specific behaviours. Here, we collect ATAC-seq, Hi-C, Capture Hi-C and nuclear RNA-seq data in stimulated CD4+ T-cells over 24 hours, to identify functional enhancers regulating gene expression. We characterise changes in DNA interaction and activity dynamics that correlate with changes gene expression, and find that the strongest correlations are observed within 200 kb of promoters. Using rheumatoid arthritis as an example of T-cell mediated disease, we demonstrate interactions of expression quantitative trait loci with target genes, and confirm assigned genes or show complex interactions for 20% of disease associated loci, including FOXO1, which we confirm using CRISPR/Cas9.


Sign in / Sign up

Export Citation Format

Share Document