scholarly journals Defining the Rhizobium leguminosarum Species Complex

Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 111 ◽  
Author(s):  
J. Peter W. Young ◽  
Sara Moeskjær ◽  
Alexey Afonin ◽  
Praveen Rahi ◽  
Marta Maluk ◽  
...  

Bacteria currently included in Rhizobium leguminosarum are too diverse to be considered a single species, so we can refer to this as a species complex (the Rlc). We have found 429 publicly available genome sequences that fall within the Rlc and these show that the Rlc is a distinct entity, well separated from other species in the genus. Its sister taxon is R. anhuiense. We constructed a phylogeny based on concatenated sequences of 120 universal (core) genes, and calculated pairwise average nucleotide identity (ANI) between all genomes. From these analyses, we concluded that the Rlc includes 18 distinct genospecies, plus 7 unique strains that are not placed in these genospecies. Each genospecies is separated by a distinct gap in ANI values, usually at approximately 96% ANI, implying that it is a ‘natural’ unit. Five of the genospecies include the type strains of named species: R. laguerreae, R. sophorae, R. ruizarguesonis, “R. indicum” and R. leguminosarum itself. The 16S ribosomal RNA sequence is remarkably diverse within the Rlc, but does not distinguish the genospecies. Partial sequences of housekeeping genes, which have frequently been used to characterize isolate collections, can mostly be assigned unambiguously to a genospecies, but alleles within a genospecies do not always form a clade, so single genes are not a reliable guide to the true phylogeny of the strains. We conclude that access to a large number of genome sequences is a powerful tool for characterizing the diversity of bacteria, and that taxonomic conclusions should be based on all available genome sequences, not just those of type strains.

Author(s):  
J. Peter W. Young ◽  
Sara Moeskjær ◽  
Alexey Afonin ◽  
Praveen Rahi ◽  
Marta Maluk ◽  
...  

Bacteria currently included in Rhizobium leguminosarum are too diverse to be considered a single species, so we can refer to this as a species complex (the Rlc). We have found 429 publicly available genome sequences that fall within the Rlc and these show that the Rlc is a distinct entity, well separated from other species in the genus. Its sister taxon is R. anhuiense. We constructed a phylogeny based on concatenated sequences of 120 universal (core) genes, and calculated pairwise average nucleotide identity (ANI) between all genomes. From these analyses, we concluded that the Rlc includes 18 distinct genospecies, plus 7 unique strains that are not placed in these genospecies. Each genospecies is separated by a distinct gap in ANI values, usually at around 96% ANI, implying that it is a 'natural' unit. Five of the genospecies include the type strains of named species: R. laguerreae, R. sophorae, R. ruizarguesonis, "R. indicum" and R. leguminosarum itself. The 16S ribosomal RNA sequence is remarkably diverse within the Rlc, but does not distinguish the genospecies. Partial sequences of housekeeping genes, which have frequently been used to characterise isolate collections, can mostly be assigned unambiguously to a genospecies, but alleles within a genospecies do not always form a clade, so single genes are not a reliable guide to the true phylogeny of the strains. We conclude that access to a large number of genome sequences is a powerful tool for characterising the diversity of bacteria, and that taxonomic conclusions should be based on all available genome sequences, not just those of type strains.


2020 ◽  
Vol 8 (5) ◽  
pp. 634 ◽  
Author(s):  
Zhenxing Xu ◽  
Yoko Masuda ◽  
Chie Hayakawa ◽  
Natsumi Ushijima ◽  
Keisuke Kawano ◽  
...  

Bacteria of the family Geobacteraceae are particularly common and deeply involved in many biogeochemical processes in terrestrial and freshwater environments. As part of a study to understand biogeochemical cycling in freshwater sediments, three iron-reducing isolates, designated as Red96T, Red100T, and Red88T, were isolated from the soils of two paddy fields and pond sediment located in Japan. The cells were Gram-negative, strictly anaerobic, rod-shaped, motile, and red-pigmented on agar plates. Growth of these three strains was coupled to the reduction of Fe(III)-NTA, Fe(III) citrate, and ferrihydrite with malate, methanol, pyruvate, and various organic acids and sugars serving as alternate electron donors. Phylogenetic analysis based on the housekeeping genes (16S rRNA gene, gyrB, rpoB, nifD, fusA, and recA) and 92 concatenated core genes indicated that all the isolates constituted a coherent cluster within the family Geobacteraceae. Genomic analyses, including average nucleotide identity and DNA–DNA hybridization, clearly differentiated the strains Red96T, Red100T, and Red88T from other species in the family Geobacteraceae, with values below the thresholds for species delineation. Along with the genomic comparison, the chemotaxonomic features further helped distinguish the three isolates from each other. In addition, the lower values of average amino acid identity and percentage of conserved protein, as well as biochemical differences with their relatives, indicated that the three strains represented a novel genus in the family Geobacteraceae. Hence, we concluded that strains Red96T, Red100T, and Red88T represented three novel species of a novel genus in the family Geobacteraceae, for which the names Oryzomonas japonicum gen. nov., sp. nov., Oryzomonas sagensis sp. nov., and Oryzomonas ruber sp. nov. are proposed, with type strains Red96T (= NBRC 114286T = MCCC 1K04376T), Red100T (= NBRC 114287T = MCCC 1K04377T), and Red88T (= MCCC 1K03694T = JCM 33033T), respectively.


2020 ◽  
Vol 6 (4) ◽  
Author(s):  
Maria Izabel A. Cavassim ◽  
Sara Moeskjær ◽  
Camous Moslemi ◽  
Bryden Fields ◽  
Asger Bachmann ◽  
...  

Rhizobia supply legumes with fixed nitrogen using a set of symbiosis genes. These can cross rhizobium species boundaries, but it is unclear how many other genes show similar mobility. Here, we investigate inter-species introgression using de novo assembly of 196 Rhizobium leguminosarum sv. trifolii genomes. The 196 strains constituted a five-species complex, and we calculated introgression scores based on gene-tree traversal to identify 171 genes that frequently cross species boundaries. Rather than relying on the gene order of a single reference strain, we clustered the introgressing genes into four blocks based on population structure-corrected linkage disequilibrium patterns. The two largest blocks comprised 125 genes and included the symbiosis genes, a smaller block contained 43 mainly chromosomal genes, and the last block consisted of three genes with variable genomic location. All introgression events were likely mediated by conjugation, but only the genes in the symbiosis linkage blocks displayed overrepresentation of distinct, high-frequency haplotypes. The three genes in the last block were core genes essential for symbiosis that had, in some cases, been mobilized on symbiosis plasmids. Inter-species introgression is thus not limited to symbiosis genes and plasmids, but other cases are infrequent and show distinct selection signatures.


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 316-324 ◽  
Author(s):  
Jongsik Chun ◽  
Fred A. Rainey

The polyphasic approach used today in the taxonomy and systematics of the Bacteria and Archaea includes the use of phenotypic, chemotaxonomic and genotypic data. The use of 16S rRNA gene sequence data has revolutionized our understanding of the microbial world and led to a rapid increase in the number of descriptions of novel taxa, especially at the species level. It has allowed in many cases for the demarcation of taxa into distinct species, but its limitations in a number of groups have resulted in the continued use of DNA–DNA hybridization. As technology has improved, next-generation sequencing (NGS) has provided a rapid and cost-effective approach to obtaining whole-genome sequences of microbial strains. Although some 12 000 bacterial or archaeal genome sequences are available for comparison, only 1725 of these are of actual type strains, limiting the use of genomic data in comparative taxonomic studies when there are nearly 11 000 type strains. Efforts to obtain complete genome sequences of all type strains are critical to the future of microbial systematics. The incorporation of genomics into the taxonomy and systematics of the Bacteria and Archaea coupled with computational advances will boost the credibility of taxonomy in the genomic era. This special issue of International Journal of Systematic and Evolutionary Microbiology contains both original research and review articles covering the use of genomic sequence data in microbial taxonomy and systematics. It includes contributions on specific taxa as well as outlines of approaches for incorporating genomics into new strain isolation to new taxon description workflows.


Author(s):  
Viola Kurm ◽  
Ilse Houwers ◽  
Claudia E. Coipan ◽  
Peter Bonants ◽  
Cees Waalwijk ◽  
...  

AbstractIdentification and classification of members of the Ralstonia solanacearum species complex (RSSC) is challenging due to the heterogeneity of this complex. Whole genome sequence data of 225 strains were used to classify strains based on average nucleotide identity (ANI) and multilocus sequence analysis (MLSA). Based on the ANI score (>95%), 191 out of 192(99.5%) RSSC strains could be grouped into the three species R. solanacearum, R. pseudosolanacearum, and R. syzygii, and into the four phylotypes within the RSSC (I,II, III, and IV). R. solanacearum phylotype II could be split in two groups (IIA and IIB), from which IIB clustered in three subgroups (IIBa, IIBb and IIBc). This division by ANI was in accordance with MLSA. The IIB subgroups found by ANI and MLSA also differed in the number of SNPs in the primer and probe sites of various assays. An in-silico analysis of eight TaqMan and 11 conventional PCR assays was performed using the whole genome sequences. Based on this analysis several cases of potential false positives or false negatives can be expected upon the use of these assays for their intended target organisms. Two TaqMan assays and two PCR assays targeting the 16S rDNA sequence should be able to detect all phylotypes of the RSSC. We conclude that the increasing availability of whole genome sequences is not only useful for classification of strains, but also shows potential for selection and evaluation of clade specific nucleic acid-based amplification methods within the RSSC.


Author(s):  
Roxanne Albertha Charles

Abstract The sand tampan, Ornithodoros savignyi (Audouin, 1827), is an economically important soft tick of the Afrotropics parasitising a wide range of livestock and humans. These ticks are known to inflict painful bites which may be fatal in susceptible hosts. Historically thought to be a single species, Ornithodoros savignyi is now considered to be a complex of four tick subspecies based on molecular and morphological studies. They include Ornithodoros (Ornithodoros) kalahariensis, O. (O.) pavimentosus, O. (O.) noorsveldensis and O. (O.) savignyi. As such there may be significant implications for previous biological studies conducted on this tick. Therefore, for the purposes of this review, sand tampan toxicosis and potentially useful biological molecules have been discussed for O. (O.) savignyi sensu lato since most reported work was based on ticks collected from the Kalahari and Lake Chad region. An overview of the host range and vector biology for the O. (O.) savignyi species complex will also be examined.


2006 ◽  
Vol 56 (2) ◽  
pp. 413-416 ◽  
Author(s):  
Sabri M. Naser ◽  
Marc Vancanneyt ◽  
Bart Hoste ◽  
Cindy Snauwaert ◽  
Katrien Vandemeulebroecke ◽  
...  

The taxonomic relatedness between the species Enterococcus casseliflavus and Enterococcus flavescens and between Enterococcus italicus and Enterococcus saccharominimus was investigated. Literature data had already indicated the synonymy between E. casseliflavus and E. flavescens, but this observation had not been formally published. Additional evidence that the two taxa represent a single species was provided by comparison of the partial sequences for three housekeeping genes, phenylalanyl-tRNA synthase alpha subunit (pheS), RNA polymerase alpha subunit (rpoA) and the alpha subunit of ATP synthase (atpA). Additional genomic data derived from DNA–DNA hybridization demonstrated that the two species are synonymous. For E. italicus and E. saccharominimus, two recently described taxa, a high 16S rRNA gene sequence similarity of >99 % and analogous phenotypic features indicated a close taxonomic relatedness. The same multilocus sequence analysis scheme for the three housekeeping genes was also applied for E. italicus and E. saccharominimus and indicated possible conspecificity, an observation that was also confirmed by a high DNA–DNA hybridization value (⩾78 %). Data from the present study led to the proposal that E. flavescens should be reclassified as a later synonym of E. casseliflavus and that E. saccharominimus should be reclassified as a later synonym of E. italicus.


2016 ◽  
Vol 4 (6) ◽  
Author(s):  
Bo Liu ◽  
Guo-Hong Liu ◽  
Yu-jing Zhu ◽  
Jie-Ping Wang ◽  
Jian-Mei Che ◽  
...  

Here, we report the draft genome sequences of Bacillus drentensis DSM 15600 T and Bacillus novalis DSM 15603 T with 5,305,306 bp and 5,667,584 bp, respectively, which will provide useful information for the functional gene mining and application of these two species. The average DNA G+C contents were 38.91% and 40.01%, respectively.


2020 ◽  
Author(s):  
Idowu Olawoye ◽  
Simon D.W. Frost ◽  
Christian T. Happi

Abstract Background: Mycobacterium tuberculosis complex (MTBC) consists of seven major lineages with three of them reported to circulate within West Africa: lineage 5 (West African 1) and lineage 6 (West African 2) which are geographically restricted to West Africa and lineage 4 (Euro-American lineage) which is found globally. It is unclear why the West African lineages are not found elsewhere; some hypotheses suggest that it could either be harboured by an animal reservoir which is restricted to West Africa, or strain preference for hosts of West African ethnicity, or inability to compete with other lineages in other locations.We tested the hypothesis that M. africanum West African 2 (lineage 6) might have emigrated out of West Africa but was outcompeted by more virulent modern strains of M. tuberculosis (MTB).Whole genome sequences of M. tuberculosis from Nigeria (n=21), South Africa (n=24) and M. africanum West African 2 from Mali (n=22) were retrieved, and a pan-genome analysis was performed after fully annotating these genomes. Results: The outcome of this analysis shows that Lineages 2, 4 and 6 all have a close pan-genome. We also see a correlation in numbers of some multiple copy core genes and amino acid substitution with lineage specificity that may have contributed to geographical distribution of these lineages.Conclusions: The findings in this study provides a perspective to one of the hypotheses that M. africanum West African 2 might find it difficult to compete against the more modern lineages outside West Africa hence its localization to the geographical region.


Author(s):  
Kiran Kirdat ◽  
Bhavesh Tiwarekar ◽  
Vipool Thorat ◽  
Shivaji Sathe ◽  
Yogesh Shouche ◽  
...  

Sugarcane Grassy Shoot (SCGS) disease is known to be related to Rice Yellow Dwarf (RYD) phytoplasmas (16SrXI-B group) which are found predominantly in sugarcane growing areas of the Indian subcontinent and South-East Asia. The 16S rRNA gene sequences of SCGS phytoplasma strains belonging to the 16SrXI-B group share 98.07 % similarity with ‘Ca. Phytoplasma cynodontis’ strain BGWL-C1 followed by 97.65 % similarity with ‘Ca. P. oryzae’ strain RYD-J. Being placed distinctly away from both the phylogenetically related species, the taxonomic identity of SCGS phytoplasma is unclear and confusing. We attempted to resolve the phylogenetic positions of SCGS phytoplasma based on the phylogenetic analysis of 16S rRNA gene (>1500 bp), nine housekeeping genes (>3500 aa), core genome phylogeny (>10 000 aa) and OGRI values. The draft genome sequences of SCGS phytoplasma (strain SCGS) and Bermuda Grass White leaf (BGWL) phytoplasma (strain LW01), closely related to ‘Ca. P. cynodontis’, were obtained. The SCGS genome was comprised of 29 scaffolds corresponding to 505 173 bp while LW01 assembly contained 21 scaffolds corresponding to 483 935 bp with the fold coverages over 330× and completeness over 90 % for both the genomes. The G+C content of SCGS was 19.86 % while that of LW01 was 20.46 %. The orthoANI values for the strain SCGS against strains LW01 was 79.42 %, and dDDH values were 22. Overall analysis reveals that SCGS phytoplasma forms a distant clade in RYD group of phytoplasmas. Based on phylogenetic analyses and OGRI values obtained from the genome sequences, a novel taxon ‘Candidatus Phytoplasma sacchari’ is proposed.


Sign in / Sign up

Export Citation Format

Share Document