scholarly journals Genome-Wide Analysis of Gene Families of Pattern Recognition Receptors in Fig Wasps (Hymenoptera, Chalcidoidea)

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1952
Author(s):  
Hong-Xia Hou ◽  
Da-Wei Huang ◽  
Zhao-Zhe Xin ◽  
Jin-Hua Xiao

Pattern recognition receptors (PRRs) play important roles in detecting pathogens and initiating the innate immune response. Different evolutionary histories of pollinators and non-pollinators may result in different immune recognition systems. A previous study had reported that there were significant differences in peptidoglycan recognition proteins (PGRPs) between pollinators and non-pollinators in gene number and lineage of specific genes. In this study, based on the genomic data of 12 fig wasp species, with seven pollinators and five non-pollinators, we investigated the evolution patterns of PRRs, such as Gram-negative bacteria-binding proteins (GNBPs), C-type lectins (CTLs), scavenger receptors class B (SCRBs), fibrinogen-related proteins (FREPs), galectins, and thioester-containing proteins (TEPs). Our results showed that pollinators had no GNBP, but non-pollinators all had two gene members, which were clustered into two different clades in the phylogenetic tree, with each clade having specific domain and motif characteristics. The analysis of CTL and SCRB gene families also showed that there were lineage-specific genes and specific expansion in non-pollinators. Our results showed that there were significant differences in immune recognition between pollinators and non-pollinators, and we concluded that they had undergone flexible adaptive evolution in different environments. Our study can provide more molecular evidence for future functional studies on the immune system of fig wasps.

Insects ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 597
Author(s):  
Hong-Xia Hou ◽  
Meng-Yuan Guo ◽  
Jin Geng ◽  
Xian-Qin Wei ◽  
Da-Wei Huang ◽  
...  

The innate immunity is the most important defense against pathogen of insects, and the peptidoglycan recognition proteins (PGRPs) play an important role in the processes of immune recognition and initiation of Toll, IMD and other signal pathways. In fig wasps, pollinators and non-pollinators present different evolutionary histories and lifestyles, even though both are closely associated with fig syconia, which may indicate their different patterns in the evolution of PGRPs. By manual annotation, we got all the PGRP genes of 12 fig wasp species, containing seven pollinators and five non-pollinators, and investigated their putative different evolutionary patterns. We found that the number of PGRP genes in pollinators was significantly lower than in non-pollinators, and the number of catalytic PGRP presented a declining trend in pollinators. More importantly, PGRP-SA is associated with initiating the Toll pathway, as well as gram-negative bacteria-binding proteins (GNBPs), which were completely lost in pollinators, which led us to speculate that the initiation of Toll pathway was simpler in pollinators than in non-pollinators. We concluded that fig pollinators owned a more streamlined innate immune recognition system than non-pollinators. Our results provide molecular evidence for the adaptive evolution of innate immunity in insects of host specificity.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 815
Author(s):  
Lianfu Chen ◽  
Simon T. Segar ◽  
Bhanumas Chantarasuwan ◽  
Da-Mien Wong ◽  
Rong Wang ◽  
...  

Figs and fig wasps are highly species-specific and comprise a model system for studying co-evolution and co-speciation. The evolutionary relationships and molecular adaptations of fig wasps to their fig hosts are poorly understood, and this is in part due to limited sequence data. Here, we present large-scale transcriptomic datasets of 25 fig wasp species with the aim of uncovering the genetic basis for host specificity. Our phylogenetic results support the monophyly of all genera associated with dioecious figs, and two genera associated with monoecious figs, Eupristina and Platyscapa, were revealed to be close relatives. We identified gene loss and gain, potentially rapidly evolving genes, and genes under positive selection. Potentially functional changes were documented and we hypothesize as to how these may determine host specificity. Overall, our study provides new insights into the evolutionary diversification of fig wasps and contributes to our understanding of adaptation in this group.


2020 ◽  
Author(s):  
James M. Cook

Abstract Background Alternative mating tactics are widespread in animals and associated with extreme morphological polymorphism in some insects. Some fig wasps have both highly modified wingless males and dispersing winged males. Wingless males mate inside figs before females disperse, while winged males mate elsewhere after dispersal. Hamilton proposed a model for this system with morphs determined by alternative alleles. This has an equilibrium where the proportion of winged males equals the proportion of females dispersing unmated; i.e. the proportion of matings they obtain. Previously, we have shown qualitative support for this prediction across nine fig wasp species. Here I test the quantitative prediction in a population of the fig wasp Pseudidarnes minerva. In addition, while Hamilton envisaged simple Mendelian strategies, some fig wasp species with two wingless male morphs (but no winged males) show a conditional strategy with morph determination influenced by the number of wasps developing in a patch - I also test for this pattern in P. minerva. Results I sampled 114 figs that contained a mean of 2.1 P. minerva wasps from 44 trees across four sites in Sydney, Australia. At the whole population level, the proportion of winged males (0.84 or 0.79 corrected for sampling bias) did not differ significantly from the proportion of unmated females (0.84), providing strong quantitative support for the prediction of Hamilton’s model. In addition, there was no evidence for other factors, such as local mate competition or fighting between wingless males, that could violate simplifying assumptions of the model. Meanwhile, the proportion of winged males was not correlated with the number of wasps per fig, providing no evidence for a conditional strategy. Conclusions Morph ratios in P. minerva are consistent with Hamilton’s simple Mendelian strategy model, where morph ratios are set by average mating opportunities at the population level. This contrasts with some fig wasps from another subfamily that show conditional morph determination, allowing finer scale adaptation to fig-level mating opportunities. However, these conditional cases do not involve wing polymorphism. Male polymorphism is common and variable in fig wasps and has evolved independently in multiple lineages with apparently different underlying mechanisms.


2020 ◽  
Vol 287 (1934) ◽  
pp. 20201377 ◽  
Author(s):  
Jaco M. Greeff ◽  
Karina Pentz ◽  
Marié Warren

Ever since Darwin's discovery of natural selection, we expect traits to evolve to increase organisms' fitness. As a result, we can use optimization models to make a priori predictions of phenotypic variation, even when selection is frequency-dependent. A notable example is the prediction of female-biased sex ratios resulting from local mate competition (LMC) and inbreeding. LMC models incorporate the effects of LMC and inbreeding. Fig wasp sex ratio adjustments fit LMC predictions well. However, the appropriateness of LMC models to fig wasps has been questioned, and the role that a coincidental by-product plays in creating the apparent fit has been clearly illustrated. Here, we show that the sex ratio adjustments of a fig wasp are the result of a dual mechanism. It consists of a standard facultative LMC response favoured by natural selection, as well as a mechanism that may be the result of selection, but that could also be a coincidental by-product. If it is a by-product, the fitness increase is coincidental and natural selection's role was limited to fine-tuning it for higher fitness returns. We further document a case of an apparent fitness-reducing sex ratio adjustment. We conclude that the use of the adaptationist approach demands that our understanding of traits must be remodelled continually to rectify spurious assumptions.


2018 ◽  
Vol 67 ◽  
pp. 85-102 ◽  
Author(s):  
Fernando Henrique Antoniolli Farache ◽  
Cecilia Bernardo Pereira ◽  
Cristiana Koschnitzke ◽  
Levi Oliveira Barros ◽  
Elmecelli Moraes de Castro Souza ◽  
...  

Biotic invasion in mutualistic communities is of particular interest due to the possible establishment of new relationships with native species. Ficus species are widely cultivated as ornamental plants, and they host specific communities of chalcid wasps that are strictly associated with the fig inflorescences. Some introduced fig species are capable of establishing new relationships with the local fig wasps, and fig wasp species may also be concomitantly introduced with their host plants. Ficusbenjamina L. is widely cultivated across the world, but the associated fig wasps are not reported outside of the species native range. We describe for the first time a non-pollinating fig wasp associated with F.benjamina inflorescences outside its native distribution. Sycobiahodites Farache & Rasplus, sp. n. is the third known species of the genus and was recorded in populations of F.benjamina introduced in the Neotropical region throughout several localities in Argentina, Brazil and Colombia. Sycobia is a gall-inducing non-pollinating fig wasp genus associated with fig trees in the Oriental and Australasian regions. This species competes with pollinators for oviposition sites and may hinder the future establishment of the native pollinator of F.benjamina, Eupristinakoningsbergeri Grandi, 1916 in the New World. However, the occurrence of a gall inducing species in this host plant may open ecological opportunities for the establishment of species belonging to other trophic levels such as cleptoparasite and parasitoid wasps.


2019 ◽  
Vol 74 ◽  
pp. 105-121
Author(s):  
Da-Mien Wong ◽  
Anthony Bain ◽  
Shiuh-Feng Shiao ◽  
Lien-Siang Chou

Similar to many vertebrate and invertebrate species, many fig wasp species are fighting other members of their species for mates. Fighting between the males of many non-pollinating fig wasp species involves injuries and fatalities. Studies have shown that large males fight for mates, whereas conspecific small males tend to adopt nonfighting, sneaky behaviors. To analyze male morphs in two non-pollinating fig wasps (Philotrypesis taida Wong & Shiao, 2018 and Sycorycteridea taipeiensis Wong & Shiao, 2018) associated with the fig tree Ficus benguetensis, the head and mandible allometry and injuries were examined as well as the morphologies of their heads and mandibles. Male fig wasps of these two nonpollinating species can be divided into two morphological groups according to their head and mandible shapes. Approximately 88% of the Philotrypesis and 62% of the Sycorycteridea males were injured and no males belonging to largest morphs were decapitated. Moreover, nearly 31% of the Philotrypesis and 45% of the Sycorycteridea males left their natal figs. No difference in injury level or male exit rate between the male morphs was observed. This study reveals slight morphological and behavioral differences that may hint towards different mating strategies among morphs.


2010 ◽  
Vol 6 (6) ◽  
pp. 838-842 ◽  
Author(s):  
Stephen G. Compton ◽  
Alexander D. Ball ◽  
Margaret E. Collinson ◽  
Peta Hayes ◽  
Alexandr P. Rasnitsyn ◽  
...  

Fig wasps and fig trees are mutually dependent, with each of the 800 or so species of fig trees ( Ficus , Moraceae) typically pollinated by a single species of fig wasp (Hymenoptera: Agaonidae). Molecular evidence suggests that the relationship existed over 65 Ma, during the Cretaceous. Here, we record the discovery of the oldest known fossil fig wasps, from England, dated at 34 Ma. They possess pollen pockets that contain fossil Ficus pollen. The length of their ovipositors indicates that their host trees had a dioecious breeding system. Confocal microscopy and scanning electron microscopy reveal that the fossil female fig wasps, and more recent species from Miocene Dominican amber, display the same suite of anatomical characters associated with fig entry and pollen-carrying as modern species. The pollen is also typical of modern Ficus . No innovations in the relationship are discernible for the last tens of millions of years.


2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Jordan D Satler ◽  
Kristen K Bernhard ◽  
John O Stireman ◽  
Carlos A Machado ◽  
Derek D Houston ◽  
...  

Abstract Figs and their associated mutualistic and parasitic wasps have been a focus of intensive ecological and evolutionary research due to their diversity, unusual reproductive biology, and highly coevolved interspecific relationships. Due to the ecological dependence of their interactions, fig wasps were once considered to be fig-species specific and to cospeciate with their hosts, however, a growing body of evidence reveals mixed support for species specificity and the importance of additional evolutionary processes (e.g., host switching) structuring these long-term interactions. Our research on the genus Idarnes Walker, 1843 (Hymenoptera, Agaonidae), a common non-pollinating wasp of New World fig flowers, reveals a community in which multiple wasp species coexist on the same host in space and time. Using both molecular and morphological data, we identify five distinct Idarnes lineages associated with a single host fig species, Ficus petiolaris Kunth, 1817 (Rosales, Moraceae). A comprehensive phylogenetic analysis including Idarnes species from numerous host fig species reveals that the lineages associated with F. petiolaris do not form a monophyletic group but are distantly related, suggesting multiple independent colonization events and subsequent diversification. Morphological and ecological data provide support that the wasps are partitioning niches within the figs, explaining the coexistence of these diverse lineages on the same host fig. These results, coupled with a growing body of research on pollinating and non-pollinating fig wasps, bring into focus a more dynamic picture of fig and fig wasp coevolution and highlight how wasp lineage divergence and niche partitioning contributes to increased species diversity and community structure on a single fig host.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
James M. Cook

Abstract Background Alternative mating tactics are widespread in animals and associated with extreme morphological polymorphism in some insects. Some fig wasps have both highly modified wingless males and dispersing winged males. Wingless males mate inside figs before females disperse, while winged males mate elsewhere after dispersal. Hamilton proposed a model for this system with morphs determined by alternative alleles. This has an equilibrium where the proportion of winged males equals the proportion of females dispersing unmated; i.e. the proportion of matings that they obtain. Previously, we have shown qualitative support for this prediction across nine wing-dimorphic fig wasp species. Here I test the quantitative prediction in the fig wasp Pseudidarnes minerva. In addition, some fig wasp species that lack winged males, but have two wingless morphs, show a conditional strategy with morph determination influenced by the number of wasps developing in a patch. I also test for this alternative pattern in the wing-dimorphic P. minerva. Results I sampled 114 figs that contained a mean of 2.1 P. minerva wasps from 44 trees across four sites in Sydney, Australia. At the whole population level, the proportion of winged males (0.84 or 0.79 corrected for sampling bias) did not differ significantly from the proportion of unmated females (0.84), providing strong quantitative support for the prediction of Hamilton’s model. In addition, there was no evidence for other factors, such as local mate competition or fighting between wingless males, that could violate simplifying assumptions of the model. Meanwhile, the proportion of winged males was not correlated with the number of wasps per fig, providing no evidence for a conditional strategy. Conclusion The morph ratio in P. minerva is consistent with Hamilton’s simple Mendelian strategy model, where morph ratios are set by average mating opportunities at the population level. This contrasts with some fig wasps from another subfamily that show conditional morph determination, allowing finer scale adaptation to fig-level mating opportunities. However, these conditional cases do not involve wing polymorphism. Male polymorphism is common and variable in fig wasps and has evolved independently in multiple lineages with apparently different underlying mechanisms.


Life ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 40
Author(s):  
Dan Zhao ◽  
Zhaozhe Xin ◽  
Hongxia Hou ◽  
Yi Zhou ◽  
Jianxia Wang ◽  
...  

Fig wasps are a group of insects (Hymenoptera: Chalcidoidea) that live in the compact syconia of fig trees (Moraceae: Ficus). Accurate classification and phylogenetic results are very important for studies of fig wasps, but the taxonomic statuses of some fig wasps, especially the non-pollinating subfamilies are difficult to determine, such as Epichrysomallinae and Sycophaginae. To resolve the taxonomic statuses of Epichrysomallinae and Sycophaginae, we obtained transcriptomes and mitochondrial genome (mitogenome) data for four species of fig wasps. These newly added data were combined with the data of 13 wasps (data on 11 fig wasp species were from our laboratory and two wasp species were download from NCBI). Based on the transcriptome and genome data, we obtained 145 single-copy orthologous (SCO) genes in 17 wasp species, and based on mitogenome data, we obtained 13 mitochondrial protein-coding genes (PCGs) for each of the 17 wasp species. Ultimately, we used 145 SCO genes, 13 mitochondrial PCGs and combined SCO genes and mitochondrial genes data to reconstruct the phylogenies of fig wasps using both maximum likelihood (ML) and Bayesian inference (BI) analyses. Our results suggest that both Epichrysomallinae and Sycophaginae are more closely related to Agaonidae with a high statistical support.


Sign in / Sign up

Export Citation Format

Share Document