scholarly journals Impact of Harvest on Switchgrass Leaf Microbial Communities

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
Esther Singer ◽  
Elizabeth M. Carpenter ◽  
Jason Bonnette ◽  
Tanja Woyke ◽  
Thomas E. Juenger

Switchgrass is a promising feedstock for biofuel production, with potential for leveraging its native microbial community to increase productivity and resilience to environmental stress. Here, we characterized the bacterial, archaeal and fungal diversity of the leaf microbial community associated with four switchgrass (Panicum virgatum) genotypes, subjected to two harvest treatments (annual harvest and unharvested control), and two fertilization levels (fertilized and unfertilized control), based on 16S rRNA gene and internal transcribed spacer (ITS) region amplicon sequencing. Leaf surface and leaf endosphere bacterial communities were significantly different with Alphaproteobacteria enriched in the leaf surface and Gammaproteobacteria and Bacilli enriched in the leaf endosphere. Harvest treatment significantly shifted presence/absence and abundances of bacterial and fungal leaf surface community members: Gammaproteobacteria were significantly enriched in harvested and Alphaproteobacteria were significantly enriched in unharvested leaf surface communities. These shifts were most prominent in the upland genotype DAC where the leaf surface showed the highest enrichment of Gammaproteobacteria, including taxa with 100% identity to those previously shown to have phytopathogenic function. Fertilization did not have any significant impact on bacterial or fungal communities. We also identified bacterial and fungal taxa present in both the leaf surface and leaf endosphere across all genotypes and treatments. These core taxa were dominated by Methylobacterium, Enterobacteriaceae, and Curtobacterium, in addition to Aureobasidium, Cladosporium, Alternaria and Dothideales. Local core leaf bacterial and fungal taxa represent promising targets for plant microbe engineering and manipulation across various genotypes and harvest treatments. Our study showcases, for the first time, the significant impact that harvest treatment can have on bacterial and fungal taxa inhabiting switchgrass leaves and the need to include this factor in future plant microbial community studies.

2020 ◽  
Vol 11 ◽  
Author(s):  
Daniel Straub ◽  
Nia Blackwell ◽  
Adrian Langarica-Fuentes ◽  
Alexander Peltzer ◽  
Sven Nahnsen ◽  
...  

Author(s):  
Tamara J. H. M. van Bergen ◽  
Ana B. Rios-Miguel ◽  
Tom M. Nolte ◽  
Ad M. J. Ragas ◽  
Rosalie van Zelm ◽  
...  

Abstract Pharmaceuticals find their way to the aquatic environment via wastewater treatment plants (WWTPs). Biotransformation plays an important role in mitigating environmental risks; however, a mechanistic understanding of involved processes is limited. The aim of this study was to evaluate potential relationships between first-order biotransformation rate constants (kb) of nine pharmaceuticals and initial concentration of the selected compounds, and sampling season of the used activated sludge inocula. Four-day bottle experiments were performed with activated sludge from WWTP Groesbeek (The Netherlands) of two different seasons, summer and winter, spiked with two environmentally relevant concentrations (3 and 30 nM) of pharmaceuticals. Concentrations of the compounds were measured by LC–MS/MS, microbial community composition was assessed by 16S rRNA gene amplicon sequencing, and kb values were calculated. The biodegradable pharmaceuticals were acetaminophen, metformin, metoprolol, terbutaline, and phenazone (ranked from high to low biotransformation rates). Carbamazepine, diatrizoic acid, diclofenac, and fluoxetine were not converted. Summer and winter inocula did not show significant differences in microbial community composition, but resulted in a slightly different kb for some pharmaceuticals. Likely microbial activity was responsible instead of community composition. In the same inoculum, different kb values were measured, depending on initial concentration. In general, biodegradable compounds had a higher kb when the initial concentration was higher. This demonstrates that Michealis-Menten kinetic theory has shortcomings for some pharmaceuticals at low, environmentally relevant concentrations and that the pharmaceutical concentration should be taken into account when measuring the kb in order to reliably predict the fate of pharmaceuticals in the WWTP. Key points • Biotransformation and sorption of pharmaceuticals were assessed in activated sludge. • Higher initial concentrations resulted in higher biotransformation rate constants for biodegradable pharmaceuticals. • Summer and winter inocula produced slightly different biotransformation rate constants although microbial community composition did not significantly change. Graphical abstract


2021 ◽  
Author(s):  
Hamed Azarbad ◽  
Julien Tremblay ◽  
Luke D. Bainard ◽  
Etienne Yergeau

AbstractNext-generation sequencing is recognized as one of the most popular and cost-effective way of characterizing microbiome in multiple samples. However, most of the currently available amplicon sequencing approaches are inherently limited, as they are often presented based on the relative abundance of microbial taxa, which may not fully represent actual microbiome profiles. Here, we combined amplicon sequencing (16S rRNA gene for bacteria and ITS region for fungi) with real-time quantitative PCR (qPCR) to characterize the rhizosphere microbiome of wheat. We show that the increase in relative abundance of major microbial phyla does not necessarily result in an increase in abundance. One striking observation when comparing relative and quantitative abundances was a substantial increase in the abundance of almost all phyla associated with the rhizosphere of plants grown in soil with no history of water stress as compared with the rhizosphere of plants growing in soil with a history of water stress, which was in contradiction with the trends observed in the relative abundance data. Our results suggest that the estimated absolute abundance approach gives a different perspective than the relative abundance approach, providing complementary information that helps to better understand the rhizosphere microbiome.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8534 ◽  
Author(s):  
Dana L. Carper ◽  
Travis J. Lawrence ◽  
Alyssa A. Carrell ◽  
Dale A. Pelletier ◽  
David J. Weston

Background Microbiomes are extremely important for their host organisms, providing many vital functions and extending their hosts’ phenotypes. Natural studies of host-associated microbiomes can be difficult to interpret due to the high complexity of microbial communities, which hinders our ability to track and identify individual members along with the many factors that structure or perturb those communities. For this reason, researchers have turned to synthetic or constructed communities in which the identities of all members are known. However, due to the lack of tracking methods and the difficulty of creating a more diverse and identifiable community that can be distinguished through next-generation sequencing, most such in vivo studies have used only a few strains. Results To address this issue, we developed DISCo-microbe, a program for the design of an identifiable synthetic community of microbes for use in in vivo experimentation. The program is composed of two modules; (1) create, which allows the user to generate a highly diverse community list from an input DNA sequence alignment using a custom nucleotide distance algorithm, and (2) subsample, which subsamples the community list to either represent a number of grouping variables, including taxonomic proportions, or to reach a user-specified maximum number of community members. As an example, we demonstrate the generation of a synthetic microbial community that can be distinguished through amplicon sequencing. The synthetic microbial community in this example consisted of 2,122 members from a starting DNA sequence alignment of 10,000 16S rRNA sequences from the Ribosomal Database Project. We generated simulated Illumina sequencing data from the constructed community and demonstrate that DISCo-microbe is capable of designing diverse communities with members distinguishable by amplicon sequencing. Using the simulated data we were able to recover sequences from between 97–100% of community members using two different post-processing workflows. Furthermore, 97–99% of sequences were assigned to a community member with zero sequences being misidentified. We then subsampled the community list using taxonomic proportions to mimic a natural plant host–associated microbiome, ultimately yielding a diverse community of 784 members. Conclusions DISCo-microbe can create a highly diverse community list of microbes that can be distinguished through 16S rRNA gene sequencing, and has the ability to subsample (i.e., design) the community for the desired number of members and taxonomic proportions. Although developed for bacteria, the program allows for any alignment input from any taxonomic group, making it broadly applicable. The software and data are freely available from GitHub (https://github.com/dlcarper/DISCo-microbe) and Python Package Index (PYPI).


2020 ◽  
Author(s):  
Nikolas M. Stasulli ◽  
Scott M. Yourstone ◽  
Ilon Weinstein ◽  
Elizabeth Ademski ◽  
Elizabeth A. Shank

Abstract BackgroundThe interconnected and overlapping habitats present in natural ecosystems remain a challenge in determining the forces driving microbial community composition. The cup-like leaf structures of some carnivorous plants, including the family Sarraceniaceae, are self-contained ecological habitats that represent systems for exploring such microbial ecology questions. We investigated whether Sarracenia minor and Sarracenia flava, when sampled at the same geographic location and time, cultivate unique microbiota; an indication of biotic selection of microbes due to eliminating many of the environmental variable present in other studies comparing samples harvested over several time points. ResultsDNA was extracted from the decomposing detritus trapped in the base of each Sarracenia leaf pitcher. We profiled a portion of the 16S rRNA gene across the bacterial community members present in this detritus using Illumina MiSeq technology. We identified a surprising amount of diversity within each pitcher, but also discovered that the two Sarracenia species each contained distinct, enriched microbial community members. This suggests a non-random establishment of microbial communities within these two Sarracenia species.ConclusionsOverall, our results indicate that microbial selection is occurring within the pitchers of these two closely related plant species, which is not due to factors such as geographic location, weather, or prey availability. This suggests that specific features of S. minor and S. flava may play a role in fostering specific insect-decomposing microbiomes. These naturally occurring microbial ecosystems can be developed to answer important questions about microbial community succession, disruption, and member contributions to the community. This study will help further establish carnivorous pitcher plants as a model system for studying confined, naturally occurring bacterial communities.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Aspen T. Reese ◽  
Anne A. Madden ◽  
Marie Joossens ◽  
Guylaine Lacaze ◽  
Robert R. Dunn

ABSTRACT Sourdough starters are naturally occurring microbial communities in which the environment, ingredients, and bakers are potential sources of microorganisms. The relative importance of these pools remains unknown. Here, bakers from two continents used a standardized recipe and ingredients to make starters that were then baked into breads. We characterized the fungi and bacteria associated with the starters, bakers’ hands, and ingredients using 16S and internal transcribed spacer (ITS) rRNA gene amplicon sequencing and then measured dough acidity and bread flavor. Starter communities were much less uniform than expected, and this variation manifested in the flavor of the bread. Starter communities were most similar to those found in flour but shared some species with the bakers’ skin. While humans likely contribute microorganisms to the starters, the reverse also appears to be true. This bidirectional exchange of microorganisms between starters and bakers highlights the importance of microbial diversity on bodies and in our environments as it relates to foods. IMPORTANCE Sourdough starters are complex communities of yeast and bacteria which confer characteristic flavor and texture to sourdough bread. The microbes present in starters can be sourced from ingredients or the baking environment and are typically consistent over time. Herein, we show that even when the recipe and ingredients for starter and bread are identical, different bakers around the globe produce highly diverse starters which then alter bread acidity and flavor. Much of the starter microbial community comes from bread flour, but the diversity is also associated with differences in the microbial community on the hands of bakers. These results indicate that bakers may be a source for yeast and bacteria in their breads and/or that bakers’ jobs are reflected in their skin microbiome.


mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Xi Fu ◽  
Yanling Li ◽  
Qianqian Yuan ◽  
Gui-hong Cai ◽  
Yiqun Deng ◽  
...  

ABSTRACT Culture-independent microbiome surveys have been conducted in homes, hospitals, schools, kindergartens and vehicles for public transport, revealing diverse microbial distributions in built environments. However, microbiome composition and the associated environmental characteristics have not been characterized in hotel environments. We presented here the first continental-scale microbiome study of hotel rooms (n = 68) spanning Asia and Europe. Bacterial and fungal communities were described by amplicon sequencing of the 16S rRNA gene and internal transcribed spacer (ITS) region and quantitative PCR. Similar numbers of bacterial (4,344) and fungal (4,555) operational taxonomic units were identified in the same sequencing depth, but most fungal taxa showed a restricted distribution compared to bacterial taxa. Aerobic, ubiquitous bacteria dominated the hotel microbiome with compositional similarity to previous samples from building and human nasopharynx environments. The abundance of Aspergillus was negatively correlated with latitude and accounted for ∼80% of the total fungal load in seven low-latitude hotels. We calculated the association between hotel microbiome and 16 indoor and outdoor environmental characteristics. Fungal composition and absolute quantity showed concordant associations with the same environmental characteristics, including latitude, quality of the interior, proximity to the sea, and visible mold, while fungal richness was negatively associated with heavy traffic (95% confidence interval [CI] = −127.05 to −0.25) and wall-to-wall carpet (95% CI = −47.60 to −3.82). Bacterial compositional variation was associated with latitude, quality of the interior, and floor type, while bacterial richness was negatively associated with recent redecoration (95% CI −179.00 to −44.55) and mechanical ventilation (95% CI = −136.71 to −5.12). IMPORTANCE This is the first microbiome study to characterize the microbiome data and associated environmental characteristics in hotel environments. In this study, we found concordant variation between fungal compositional variation and absolute quantity and discordant variation between community variation/quantity and richness. Our study can be used to promote hotel hygiene standards and provide resource information for future microbiome and exposure studies associated with health effects in hotel rooms.


2020 ◽  
Vol 8 (2) ◽  
pp. 286
Author(s):  
Nina Lackner ◽  
Andreas O. Wagner ◽  
Rudolf Markt ◽  
Paul Illmer

pH is a central environmental factor influencing CH4 production from organic substrates, as every member of the complex microbial community has specific pH requirements. Here, we show how varying pH conditions (5.0–8.5, phosphate buffered) and the application of a phosphate buffer per se induce shifts in the microbial community composition and the carbon flow during nine weeks of thermophilic batch digestion. Beside monitoring the methane production as well as volatile fatty acid concentrations, amplicon sequencing of the 16S rRNA gene was conducted. The presence of 100 mM phosphate resulted in reduced CH4 production during the initial phase of the incubation, which was characterized by a shift in the dominant methanogenic genera from a mixed Methanosarcina and Methanoculleus to a pure Methanoculleus system. In buffered samples, acetate strongly accumulated in the beginning of the batch digestion and subsequently served as a substrate for methanogens. Methanogenesis was permanently inhibited at pH values ≤5.5, with the maximum CH4 production occurring at pH 7.5. Adaptations of the microbial community to the pH variations included shifts in the archaeal and bacterial composition, as less competitive organisms with a broad pH range were able to occupy metabolic niches at unfavorable pH conditions.


2020 ◽  
Vol 66 (4) ◽  
pp. 263-273
Author(s):  
Julien Saavedra-Lavoie ◽  
Anne de la Porte ◽  
Sarah Piché-Choquette ◽  
Claude Guertin ◽  
Philippe Constant

Trace gas uptake by microorganisms controls the oxidative capacity of the troposphere, but little is known about how this important function is affected by changes in soil microbial diversity. This article bridges that knowledge gap by examining the response of the microbial community-level physiological profiles (CLPPs), carbon dioxide (CO2) production, and molecular hydrogen (H2) and carbon monoxide (CO) oxidation activities to manipulation of microbial diversity in soil microcosms. Microbial diversity was manipulated by mixing nonsterile and sterile soil with and without the addition of antibiotics. Nonsterile soil without antibiotics was used as a reference. Species composition changed significantly in soil microcosms as a result of dilution and antibiotic treatments, but there was no difference in species richness, according to PCR amplicon sequencing of the bacterial 16S rRNA gene. The CLPP was 15% higher in all dilution and antibiotic treatments than in reference microcosms, but the dilution treatment had no effect on CO2 production. Soil microcosms with dilution treatments had 58%–98% less H2 oxidation and 54%–99% lower CO oxidation, relative to reference microcosms, but did not differ among the antibiotic treatments. These results indicate that H2 and CO oxidation activities respond to compositional changes of microbial community in soil.


Sign in / Sign up

Export Citation Format

Share Document