scholarly journals Effects of BPA, BPS, and BPF on Oxidative Stress and Antioxidant Enzyme Expression in Bovine Oocytes and Spermatozoa

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 142
Author(s):  
Mimi Nguyen ◽  
Reem Sabry ◽  
Ola S. Davis ◽  
Laura A. Favetta

Bisphenol A (BPA) and its analogs, bisphenol S (BPS) and bisphenol F (BPF), might impact fertility by altering oxidative stress pathways. Here, we hypothesize that bisphenols-induced oxidative stress is responsible for decreased gamete quality. In both female (cumulus-oocyte-complexes—COCs) and male (spermatozoa), oxidative stress was measured by CM-H2DCFDA assay and key ROS scavengers (SOD1, SOD2, GPX1, GPX4, CAT) were quantified at the mRNA and protein levels using qPCR and Western blot (COCs)/immunofluorescence (sperm). Either gamete was treated in five groups: control, vehicle, and 0.05 mg/mL of BPA, BPS, or BPF. Our results show elevated ROS in BPA-treated COCs but decreased production in BPS- and BPF-treated spermatozoa. Additionally, both mRNA and protein expression of SOD2, GPX1, and GPX4 were decreased in BPA-treated COCs (p < 0.05). In sperm, motility (p < 0.03), but not morphology, was significantly altered by bisphenols. SOD1 mRNA expression was significantly increased, while GPX4 was significantly reduced. These results support BPA’s ability to alter oxidative stress in oocytes and, to a lesser extent, in sperm. However, BPS and BPF likely act through different mechanisms.

2019 ◽  
Vol 35 (4) ◽  
pp. 294-303 ◽  
Author(s):  
Asad Ullah ◽  
Madeeha Pirzada ◽  
Sarwat Jahan ◽  
Hizb Ullah ◽  
Muhammad Jamil Khan

Bisphenol A (BPA) is a well-known endocrine-disrupting chemical with estrogenic activity. The widespread exposure of individuals to BPA is suspected to affect a variety of physiological functions, including reproduction, development, and metabolism. Here we report the mechanisms by which BPA and three of its analogues bisphenol B (BPB), bisphenol F (BPF), and bisphenol S (BPS) cause generation of reactive oxygen species (ROS), sperm DNA damage, and oxidative stress in both in vivo and in vitro rat models. Sperm were incubated with different concentrations (1, 10, and 100 µg/L) of BPA and its analogues BPB, BPF, and BPS for 2 h. BPA and its analogues were observed to increase DNA fragmentation, formation of ROS, and affected levels of superoxide dismutase at higher concentration groups. In an in vivo experiment, rats were exposed to different concentrations (5, 25, and 50 mg/kg/day) of BPA, BPB, BPF, and BPS for 28 days. In the higher dose (50 mg/kg/day) treated groups of BPA and its analogues BPB, BPF, and BPS, DNA damage was observed while the motility of sperm was not affected.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xinxin Yang ◽  
Haibo Yang ◽  
Fengdi Wu ◽  
Zhipeng Qi ◽  
Jiashuo Li ◽  
...  

Excessive manganese (Mn) can accumulate in the striatum of the brain following overexposure. Oxidative stress is a well-recognized mechanism in Mn-induced neurotoxicity. It has been proven that glutathione (GSH) depletion is a key factor in oxidative damage during Mn exposure. However, no study has focused on the dysfunction of GSH synthesis-induced oxidative stress in the brain during Mn exposure. The objective of the present study was to explore the mechanism of Mn disruption of GSH synthesis via EAAC1 and xCT in vitro and in vivo. Primary neurons and astrocytes were cultured and treated with different doses of Mn to observe the state of cells and levels of GSH and reactive oxygen species (ROS) and measure mRNA and protein expression of EAAC1 and xCT. Mice were randomly divided into seven groups, which received saline, 12.5, 25, and 50 mg/kg MnCl2, 500 mg/kg AAH (EAAC1 inhibitor) + 50 mg/kg MnCl2, 75 mg/kg SSZ (xCT inhibitor) + 50 mg/kg MnCl2, and 100 mg/kg NAC (GSH rescuer) + 50 mg/kg MnCl2 once daily for two weeks. Then, levels of EAAC1, xCT, ROS, GSH, malondialdehyde (MDA), protein sulfhydryl, carbonyl, 8-hydroxy-2-deoxyguanosine (8-OHdG), and morphological and ultrastructural features in the striatum of mice were measured. Mn reduced protein levels, mRNA expression, and immunofluorescence intensity of EAAC1 and xCT. Mn also decreased the level of GSH, sulfhydryl, and increased ROS, MDA, 8-OHdG, and carbonyl in a dose-dependent manner. Injury-related pathological and ultrastructure changes in the striatum of mice were significantly present. In conclusion, excessive exposure to Mn disrupts GSH synthesis through inhibition of EAAC1 and xCT to trigger oxidative damage in the striatum.


2021 ◽  
Author(s):  
Tomas Prudencio ◽  
Luther Swift ◽  
Devon Guerrelli ◽  
Blake Cooper ◽  
Marissa Reilly ◽  
...  

ABSTRACTBackgroundBisphenol A (BPA) is a high-production volume chemical that is commonly used to manufacture consumer and medical-grade plastic products. Due to its ubiquity, the general population can incur daily environmental exposure to BPA, while heightened BPA exposure has been reported in intensive care patients and industrial workers. Due to health concerns, structural analogues are being explored as replacements for BPA.ObjectiveThis study aimed to examine the direct nongenomic effects of BPA on cardiac electrophysiology and compare its safety profile to recently developed alternatives, including BPS (bisphenol S) and BPF (bisphenol F).MethodsWhole-cell voltage-clamp recordings were performed on cell lines transfected with Nav1.5, hERG, or Cav1.2. Results of single channel experiments were validated by conducting electrophysiology studies on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and intact, whole heart preparations.ResultsOf the chemicals tested, BPA was the most potent inhibitor of both fast (INa-P) and late (INa-L) sodium channel (IC50 = 55.3 and 23.6 μM, respectively), L-type calcium channel (IC50 = 30.8 μM) and hERG channel current (IC50 = 127 μM). The inhibitory effects of BPA and BPF on L-type calcium channels were supported by microelectrode array recordings, which revealed shortening of the extracellular field potential (akin to QT interval). Further, BPA and BPF exposure impaired atrioventricular conduction in intact, whole heart experiments. BPS did not alter any of the cardiac electrophysiology parameters tested.DiscussionResults of this study demonstrate that BPA and BPF exert an immediate inhibitory effect on cardiac ion channels, and that BPS may be a safer alternative. Intracellular signaling or genomic effects of bisphenol analogues were not investigated; therefore, additional mechanistic studies are necessary to fully elucidate the safety profile of bisphenol analogues on the heart.


Chemosphere ◽  
2018 ◽  
Vol 209 ◽  
pp. 508-516 ◽  
Author(s):  
Asad Ullah ◽  
Madeeha Pirzada ◽  
Sarwat Jahan ◽  
Hizb Ullah ◽  
Ghazala Shaheen ◽  
...  

2020 ◽  
Vol 21 (10) ◽  
pp. 3529 ◽  
Author(s):  
Magdalena Zaborowska ◽  
Jadwiga Wyszkowska ◽  
Agata Borowik

The choice of the study objective was affected by numerous controversies and concerns around bisphenol F (BPF) and bisphenol S (BPS)—analogues of bisphenol A (BPA). The study focused on the determination and comparison of the scale of the BPA, BPF, and BPS impact on the soil microbiome and its enzymatic activity. The following parameters were determined in soil uncontaminated and contaminated with BPA, BPF, and BPS: the count of eleven groups of microorganisms, colony development (CD) index, microorganism ecophysiological diversity (EP) index, genetic diversity of bacteria and activity of dehydrogenases (Deh), urease (Ure), catalase (Cat), acid phosphatase (Pac), alkaline phosphatase (Pal), arylsulphatase (Aryl) and β-glucosidase (Glu). Bisphenols A, S and F significantly disrupted the soil homeostasis. BPF is regarded as the most toxic, followed by BPS and BPA. BPF and BPS reduced the abundance of Proteobacteria and Acidobacteria and increased that of Actinobacteria. Unique types of bacteria were identified as well as the characteristics of each bisphenol: Lysobacter, Steroidobacter, Variovorax, Mycoplana, for BPA, Caldilinea, Arthrobacter, Cellulosimicrobium and Promicromonospora for BPF and Dactylosporangium Geodermatophilus, Sphingopyxis for BPS. Considering the strength of a negative impact of bisphenols on the soil biochemical activity, they can be arranged as follows: BPS > BPF > BPA. Urease and arylsulphatase proved to be the most susceptible and dehydrogenases the least susceptible to bisphenols pressure, regardless of the study duration.


1999 ◽  
Vol 276 (5) ◽  
pp. F786-F793 ◽  
Author(s):  
Zheng Zhang ◽  
Xiao-Yan Yang ◽  
David M. Cohen

Urea treatment (100–300 mM) increased expression of the oxidative stress-responsive transcription factor, Gadd153/CHOP, at the mRNA and protein levels (at ≥4 h) in renal medullary mIMCD3 cells in culture, whereas other solutes did not. Expression of the related protein, CCAAT/enhancer-binding protein (C/EBP-β), was not affected, nor was expression of the sensor of endoplasmic reticulum stress, grp78. Urea modestly increased Gadd153 transcription by reporter gene analysis but failed to influence Gadd153 mRNA stability. Importantly, upregulation of Gadd153 mRNA and protein expression by urea was antioxidant sensitive. Accordingly, urea treatment was associated with oxidative stress, as quantitated by intracellular reduced glutathione content in mIMCD3 cells. In addition, antioxidant treatment partially inhibited the ability of urea to activate transcription of an Egr-1 luciferase reporter gene. Therefore oxidative stress represents a novel solute-signaling pathway in the kidney medulla and, potentially, in other tissues.


Chemosphere ◽  
2019 ◽  
Vol 220 ◽  
pp. 185-194 ◽  
Author(s):  
Jeremy Gingrich ◽  
Yong Pu ◽  
Richard Ehrhardt ◽  
Rajendiran Karthikraj ◽  
Kurunthachalam Kannan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document