scholarly journals A Call for More Snow Sampling

Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 435
Author(s):  
Steven R. Fassnacht

The snowpack is important for water resources, tourism, ecology, and the global energy budget. Over the past century, we have gone from point measurements of snow water equivalent (SWE) to estimate spring and summer runoff volumes, to remote sensing of various snowpack properties at continuously finer spatial and temporal resolutions, to various complexities of snowpack and hydrological modeling, to the current fusion of field data with remote sensing and modeling, all to improve our estimates of the snowpack and the subsequent runoff. However, we are still limited by the uncertainty induced by scaling from point field measurements to the area represented by remote sensing and modeling. This paper uses several examples of fine-resolution sampling to issue a call to snow hydrologists and other earth scientists to collect more data, or at least to thoroughly evaluate their sampling strategy for collecting ground-truth measurements. Recommendations are provided for different approaches to have more representative sampling, when at all possible, to collect at least a few more samples or data points.

1987 ◽  
Vol 18 (1) ◽  
pp. 1-20 ◽  
Author(s):  
P. Y. Bernier

This review explores from a user's viewpoint the possibilities and limitations of microwave-based techniques for the remote sensing of snowpack properties. Mapping of dry snowpacks and detection of melt onset can be achieved with combinations of readings taken at different frequencies with passive microwave sensors. A combination of readings from both passive and active sensors coupled with ground truth data will be required to estimate snow water equivalent under most snow conditions. Snowpack structure and overlying vegetation still present major problems in the estimation of snowpack water equivalent from microwave remote sensing devices.


2013 ◽  
Vol 7 (6) ◽  
pp. 5307-5332 ◽  
Author(s):  
M. Juen ◽  
C. Mayer ◽  
A. Lambrecht ◽  
H. Haidong ◽  
L. Shiyin

Abstract. To quantify the ablation processes on a debris covered glacier, a simple distributed ablation model has been developed and applied to a selected glacier. For this purpose, a bundle of field measurements was carried out to collect empirical data. A morphometric analysis of the glacier surface enables us to statistically capture the areal distribution of topographic features that influence debris thickness and consequently ablation. Remote sensing techniques, using high resolution satellite imagery, were used to extrapolate the ground truth results to the whole ablation area and to map and classify melt-relevant surface types. As a result, a practically applicable method is presented, that allows the estimation of ablation on a debris covered glacier by combining field data and remote sensing information. The sub-debris ice ablation accounts for about 19% of the entire ice ablation, while the percentage of the moraine covered area accounts for approximately 32% of the entire glacerized area. Although the ice cliffs occupy only 1.7% of the debris covered area the melt amount accounts for approximately 15% of the total sub-debris ablation and 2.7% of the total ablation respectively. Our study highlights the influence of debris cover on the response of the glacier terminus to climate warming. Due to the fact that melt rates beyond 0.1m of moraine cover are highly restricted the shielding effect of the debris cover dominates over the temperature- and elevation dependence of the ablation in the bare ice case.


2021 ◽  
Author(s):  
Leung Tsang ◽  
Michael Durand ◽  
Chris Derksen ◽  
Ana P. Barros ◽  
Do-Hyuk Kang ◽  
...  

Abstract. Seasonal snow cover is the largest single component of the cryosphere in areal extent, covering an average of 46 million square km of Earth's surface (31 % of the land area) each year, and is thus an important expression of and driver of the Earth’s climate. In recent years, Northern Hemisphere spring snow cover has been declining at about the same rate (~ −13 %/decade) as Arctic summer sea ice. More than one-sixth of the world’s population relies on seasonal snowpack and glaciers for a water supply that is likely to decrease this century. Snow is also a critical component of Earth’s cold regions' ecosystems, in which wildlife, vegetation, and snow are strongly interconnected. Snow water equivalent (SWE) describes the quantity of snow stored on the land surface and is of fundamental importance to water, energy, and geochemical cycles. Quality global SWE estimates are lacking. Given the vast seasonal extent combined with the spatially variable nature of snow distribution at regional and local scales, surface observations will not be able to provide sufficient SWE information. Satellite observations presently cannot provide SWE information at the spatial and temporal resolutions required to address science and high socio-economic value applications such as water resource management and streamflow forecasting. In this paper, we review the potential contribution of X- and Ku-Band Synthetic Aperture Radar (SAR) for global monitoring of SWE. We describe radar interactions with snow-covered landscapes, characterization of snowpack properties using radar measurements, and refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. SAR can image the surface during both day and night regardless of cloud cover, allowing high-frequency revisit at high spatial resolution as demonstrated by missions such as Sentinel-1. The physical basis for estimating SWE from X- and Ku-band radar measurements at local scales is volume scattering by millimetre-scale snow grains. Inference of global snow properties from SAR requires an interdisciplinary approach based on field observations of snow microstructure, physical snow modelling, electromagnetic theory, and retrieval strategies over a range of scales. New field measurement capabilities have enabled significant advances in understanding snow microstructure such as grain size, densities, and layering. We describe radar interactions with snow-covered landscapes, the characterization of snowpack properties using radar measurements, and the refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. This review serves to inform the broader snow research, monitoring, and applications communities on progress made in recent decades, and sets the stage for a new era in SWE remote-sensing from SAR measurements.


2006 ◽  
Vol 7 (3) ◽  
pp. 443-457 ◽  
Author(s):  
Michael Durand ◽  
Steven A. Margulis

Abstract A season-long, point-scale radiometric data assimilation experiment is performed in order to test the feasibility of snow water equivalent (SWE) estimation. Synthetic passive microwave observations at Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) frequencies and synthetic broadband albedo observations are assimilated simultaneously in order to update snowpack states in a land surface model using the ensemble Kalman filter (EnKF). The effects of vegetation and atmosphere are included in the radiative transfer model (RTM). The land surface model (LSM) was given biased precipitation to represent typical errors introduced in modeling, yet was still able to recover the true value of SWE with a seasonally integrated rmse of only 2.95 cm, despite a snow depth of around 3 m and the presence of liquid water in the snowpack. This ensemble approach is ideal for investigating the complex theoretical relationships between the snowpack properties and the observations, and exploring the implications of these relationships for the inversion of remote sensing measurements for estimating snowpack properties. The contributions of each channel to recovering the true SWE are computed, and it was found that the low-frequency 10.67-GHz AMSR-E channels contain information even for very deep snow. The effect of vegetation thickness on assimilation results is explored. Results from the assimilation are compared to those from a pure modeling approach and from a remote sensing inversion approach, and the effects of measurement error and ensemble size are investigated.


Author(s):  
P. K. Thakur ◽  
P. R. Dhote ◽  
A. Roy ◽  
S. P. Aggarwal ◽  
B. R. Nikam ◽  
...  

Abstract. The Himalayan region are home to the world’s youngest and largest mountains, and origins of major rivers systems of South Asia. The present work highlight the importance of remote sensing (RS) data based precipitation and terrain products such as digital elevation models, glacier lakes, drainage morphology along with limited ground data for improving the accuracy of hydrological and hydrodynamic (HD) models in various Himalayan river basins such as Upper Ganga, Beas, Sutlej, Teesta, Koshi etc. The satellite based rainfall have mostly shown under prediction in the study area and few places have are also showing over estimation of rainfall. Hydrological modeling results were most accurate for Beas basin, followed by Upper Ganga basin and were least matching for Sutlej basin. Limited ground truth using GNSS measurements showed that digital elevation model (DEM) for carto version 3.1 is most accurate, followed by ALOS-PALSAR 12.5 DEM as compared to other open source DEMs. Major erosion and deposition was found in Rivers Bhagirathi, Alakhnanda, Gori Ganga and Yamuna in Uttarakhand state and Beas and Sutlej Rivers in Himachal Pradesh using pre and post flood DEM datasets. The terrain data and river cross section data showed that river cross sections and water carrying capacity before and after 2013 floods have changed drastically in many river stretches of upper Ganga and parts of Sutlej river basins. The spatio-temporal variation and evolution of glacier lakes was for lakes along with GLOF modeling few lakes of Upper Chenab, Upper Ganga, Upper Teesta and Koshi river basin was done using time series of RS data from Landsat, Sentinel-1 and Google earth images.


2009 ◽  
Vol 11 (3-4) ◽  
pp. 194-201 ◽  
Author(s):  
Noël D. Evora ◽  
Paulin Coulibaly

Artificial neural networks (ANNs) are very effective statistical models for (1) extracting significant features or characteristics from complex data structures and/or for (2) learning nonlinear relationships involved in any input–output mapping. Another interesting aspect of ANN modeling is the fact that overall performance of these models is not greatly hampered by the presence of error-corrupted values in some input nodes. ANNs have gained interest in remote sensing applications as valuable inverse models that can retrieve physical characteristics of interest, such as precipitation, from remote sensing measurements collected from radars or satellites. The spatial coverage and high resolution of remote sensing measurements relative to ground-based measurements can improve the hydrological modeling of the water cycle at both local and global scales. This review paper intends to present recent advances in artificial neural network modeling of remote sensing applications in hydrology. This paper focuses on precipitation and snow water equivalent (SWE) retrievals from remote sensing data.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 959
Author(s):  
Benjamin Clark ◽  
Ruth DeFries ◽  
Jagdish Krishnaswamy

As part of its nationally determined contributions as well as national forest policy goals, India plans to boost tree cover to 33% of its land area. Land currently under other uses will require tree-plantations or reforestation to achieve this goal. This paper examines the effects of converting cropland to tree or forest cover in the Central India Highlands (CIH). The paper examines the impact of increased forest cover on groundwater infiltration and recharge, which are essential for sustainable Rabi (winter, non-monsoon) season irrigation and agricultural production. Field measurements of saturated hydraulic conductivity (Kfs) linked to hydrological modeling estimate increased forest cover impact on the CIH hydrology. Kfs tests in 118 sites demonstrate a significant land cover effect, with forest cover having a higher Kfs of 20.2 mm hr−1 than croplands (6.7mm hr−1). The spatial processes in hydrology (SPHY) model simulated forest cover from 2% to 75% and showed that each basin reacts differently, depending on the amount of agriculture under paddy. Paddy agriculture can compensate for low infiltration through increased depression storage, allowing for continuous infiltration and groundwater recharge. Expanding forest cover to 33% in the CIH would reduce groundwater recharge by 7.94 mm (−1%) when converting the average cropland and increase it by 15.38 mm (3%) if reforestation is conducted on non-paddy agriculture. Intermediate forest cover shows however shows potential for increase in net benefits.


2021 ◽  
Vol 13 (2) ◽  
pp. 283
Author(s):  
Junzhe Zhang ◽  
Wei Guo ◽  
Bo Zhou ◽  
Gregory S. Okin

With rapid innovations in drone, camera, and 3D photogrammetry, drone-based remote sensing can accurately and efficiently provide ultra-high resolution imagery and digital surface model (DSM) at a landscape scale. Several studies have been conducted using drone-based remote sensing to quantitatively assess the impacts of wind erosion on the vegetation communities and landforms in drylands. In this study, first, five difficulties in conducting wind erosion research through data collection from fieldwork are summarized: insufficient samples, spatial displacement with auxiliary datasets, missing volumetric information, a unidirectional view, and spatially inexplicit input. Then, five possible applications—to provide a reliable and valid sample set, to mitigate the spatial offset, to monitor soil elevation change, to evaluate the directional property of land cover, and to make spatially explicit input for ecological models—of drone-based remote sensing products are suggested. To sum up, drone-based remote sensing has become a useful method to research wind erosion in drylands, and can solve the issues caused by using data collected from fieldwork. For wind erosion research in drylands, we suggest that a drone-based remote sensing product should be used as a complement to field measurements.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4118
Author(s):  
Leonardo F. Arias-Rodriguez ◽  
Zheng Duan ◽  
José de Jesús Díaz-Torres ◽  
Mónica Basilio Hazas ◽  
Jingshui Huang ◽  
...  

Remote Sensing, as a driver for water management decisions, needs further integration with monitoring water quality programs, especially in developing countries. Moreover, usage of remote sensing approaches has not been broadly applied in monitoring routines. Therefore, it is necessary to assess the efficacy of available sensors to complement the often limited field measurements from such programs and build models that support monitoring tasks. Here, we integrate field measurements (2013–2019) from the Mexican national water quality monitoring system (RNMCA) with data from Landsat-8 OLI, Sentinel-3 OLCI, and Sentinel-2 MSI to train an extreme learning machine (ELM), a support vector regression (SVR) and a linear regression (LR) for estimating Chlorophyll-a (Chl-a), Turbidity, Total Suspended Matter (TSM) and Secchi Disk Depth (SDD). Additionally, OLCI Level-2 Products for Chl-a and TSM are compared against the RNMCA data. We observed that OLCI Level-2 Products are poorly correlated with the RNMCA data and it is not feasible to rely only on them to support monitoring operations. However, OLCI atmospherically corrected data is useful to develop accurate models using an ELM, particularly for Turbidity (R2=0.7). We conclude that remote sensing is useful to support monitoring systems tasks, and its progressive integration will improve the quality of water quality monitoring programs.


2021 ◽  
Vol 13 (7) ◽  
pp. 1247
Author(s):  
Bowen Zhu ◽  
Xianhong Xie ◽  
Chuiyu Lu ◽  
Tianjie Lei ◽  
Yibing Wang ◽  
...  

Extreme hydrologic events are getting more frequent under a changing climate, and a reliable hydrological modeling framework is important to understand their mechanism. However, existing hydrological modeling frameworks are mostly constrained to a relatively coarse resolution, unrealistic input information, and insufficient evaluations, especially for the large domain, and they are, therefore, unable to address and reconstruct many of the water-related issues (e.g., flooding and drought). In this study, a 0.0625-degree (~6 km) resolution variable infiltration capacity (VIC) model developed for China from 1970 to 2016 was extensively evaluated against remote sensing and ground-based observations. A unique feature in this modeling framework is the incorporation of new remotely sensed vegetation and soil parameter dataset. To our knowledge, this constitutes the first application of VIC with such a long-term and fine resolution over a large domain, and more importantly, with a holistic system-evaluation leveraging the best available earth data. The evaluations using in-situ observations of streamflow, evapotranspiration (ET), and soil moisture (SM) indicate a great improvement. The simulations are also consistent with satellite remote sensing products of ET and SM, because the mean differences between the VIC ET and the remote sensing ET range from −2 to 2 mm/day, and the differences for SM of the top thin layer range from −2 to 3 mm. Therefore, this continental-scale hydrological modeling framework is reliable and accurate, which can be used for various applications including extreme hydrological event detections.


Sign in / Sign up

Export Citation Format

Share Document