scholarly journals Garnet Chemical Zoning Based Thermobarometry: Method Evaluation and Applications in the Menderes Massif, Western Turkey

Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 505
Author(s):  
Thomas M. Etzel ◽  
Elizabeth J. Catlos

The garnet chemical zoning method (GZM) is a reliable thermodynamic approach for forward modeling pressure-temperature (P-T) paths using observed garnet and bulk rock compositions. However, intracrystalline diffusion is known to compromise the integrity of GZM modeled garnet-growth P-T paths. For this reason, extracting reliable metamorphic estimates from garnet-bearing schists in the Central Menderes Massif (CMM), western Turkey, has been difficult. To evaluate the impact of diffusion on GZM, we simulate garnet growth and diffusion for an average metapelite using the program Theria_G. Modeled garnet compositions from four simulations are used to estimate P-T conditions and paths by GZM, which are compared against Theria_G specified P-T-t trajectories. Factors influencing results are heating/cooling rate, grain size, and peak T. At a maximum T of 610 °C, both undiffused and diffused garnet compositions returned estimates comparable to prescribed conditions regardless of heating/cooling rate. Diffused profiles from simulations reaching a maximum T of 670 °C also reproduced prescribed P-T paths if tectonism occurred at high heating/cooling rates (50 °C/my). From these insights and additional Theria_G simulation-derived observations for CMM garnets, we deduce that metamorphism in the region exceeded 650 °C and achieved a maximum burial P between 8–10 kbar prior to Cenozoic exhumation.

Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Thomas M. Etzel ◽  
Elizabeth J. Catlos ◽  
Ibrahim Cemen ◽  
Cenk Ozerdem ◽  
Tolga Oyman ◽  
...  

Abstract The Menderes Massif (Turkey) is a metamorphic core complex that records Alpine crustal shortening and extension. Here, nine garnet-bearing schist samples in the Central Menderes Massif (CMM) from below the Alaşehir detachment (AD) were studied to reconstruct their growth history. P-T estimates made using a chemical zoning approach, and petrological observations, indicate garnet grew between ~6 kbar and 550°C and 7.5-9 kbar and 625-650°C. Two P-T path shapes from two samples emerged (isobaric and burial), suggesting that either separate garnet-growth events occurred, or different garnet generations from the same metamorphic event were sampled. Despite observable diffusional modification in most garnets, thermobarometric estimates for crystal-rim growth yield P-T estimates similar to those reported elsewhere in the region. Ion microprobe monazite ages, paired with textural observations, from three of the samples time early retrograde metamorphism (~36-28 Ma). To better understand Neogene extension/exhumation, K-feldspar 40Ar/39Ar ages were obtained from two synextensional granites (Salihli and Turgutlu) exposed along the AD and two from the northern Simav detachment (Koyunoba and Eğrigöz). This data suggests the Simav detachment footwall rapidly exhumed at ~20 Ma, whereas the AD experienced two periods of exhumation/cooling (~14 Ma and~5 Ma). AD ages support a pulsed exhumation model for the massif.


Author(s):  
C B Baker ◽  
E J Catlos ◽  
S S Sorensen ◽  
I Çemen ◽  
M Hancer

2017 ◽  
Vol 45 (10) ◽  
pp. 1607-1618 ◽  
Author(s):  
Seung Yun Lee ◽  
Sunho Jung ◽  
Sangdo Oh ◽  
Seong Hoon Park

We proposed that a moderator, others' similarity, would determine the impact of high participation rates of others on an individual's charitable behavior, and aimed to show that this moderator would work through the diffusion of responsibility motive. Participants (N = 152 undergraduate students) completed measures of charitable behavior and diffusion of responsibility, after being assigned to 1 of 2 conditions where a set percentage of other students (manipulated as either similar undergraduate students or dissimilar graduate students) were stated to have already donated to a charitable campaign (high contribution condition = 70% participation, low contribution condition = 30% participation). Our results showed that the high participation rate of others increased an individual's charitable behavior when the others in question were similar to that individual, but not when the others were dissimilar. In addition, the high rate of participation by others increased the diffusion of responsibility motive when the others in question were dissimilar to that individual, leading to a negative effect on that individual's charitable behavior.


2021 ◽  
Vol 121 (4) ◽  
pp. 1207-1218
Author(s):  
Josh T. Arnold ◽  
Stephen J. Bailey ◽  
Simon G. Hodder ◽  
Naoto Fujii ◽  
Alex B. Lloyd

Abstract Purpose This study assessed the impact of normobaric hypoxia and acute nitrate ingestion on shivering thermogenesis, cutaneous vascular control, and thermometrics in response to cold stress. Method Eleven male volunteers underwent passive cooling at 10 °C air temperature across four conditions: (1) normoxia with placebo ingestion, (2) hypoxia (0.130 FiO2) with placebo ingestion, (3) normoxia with 13 mmol nitrate ingestion, and (4) hypoxia with nitrate ingestion. Physiological metrics were assessed as a rate of change over 45 min to determine heat loss, and at the point of shivering onset to determine the thermogenic thermoeffector threshold. Result Independently, hypoxia expedited shivering onset time (p = 0.05) due to a faster cooling rate as opposed to a change in central thermoeffector thresholds. Specifically, compared to normoxia, hypoxia increased skin blood flow (p = 0.02), leading to an increased core-cooling rate (p = 0.04) and delta change in rectal temperature (p = 0.03) over 45 min, yet the same rectal temperature at shivering onset (p = 0.9). Independently, nitrate ingestion delayed shivering onset time (p = 0.01), mediated by a change in central thermoeffector thresholds, independent of changes in peripheral heat exchange. Specifically, compared to placebo ingestion, no difference was observed in skin blood flow (p = 0.5), core-cooling rate (p = 0.5), or delta change in rectal temperature (p = 0.7) over 45 min, while nitrate reduced rectal temperature at shivering onset (p = 0.04). No interaction was observed between hypoxia and nitrate ingestion. Conclusion These data improve our understanding of how hypoxia and nitric oxide modulate cold thermoregulation.


2011 ◽  
Vol 189-193 ◽  
pp. 3891-3894
Author(s):  
Ya Min Li ◽  
Hong Jun Liu ◽  
Yuan Hao

The casting Fe3Al intermetallics were solidified in sodium silicate sand mould and permanent mould respectively to get different cooling rates. After heat treatment (1000°С/15 h homogenizing annealing + furnace cooling followed by 600°С/1 h tempering + oil quenching), the microstructure and properties of Fe3Al intermetallics were investigated. The results show that the heat-treated Fe3Al intermetallics at higher cooling rate has finer grained microstructure than lower cooling rate, and the lattice distortion increases due to the higher solid solubility of the elements Cr and B at higher cooling rate. The tensile strength and hardness of the Fe3Al intermetallics at higher cooling rate are slightly higher also. However, the impact power of intermetallics at higher cooling rate is 67.5% higher than that at lower cooling rate, and the impact fracture mode is also transformed from intercrystalline fracture at lower cooling rate to intercrystallin+transcrystalline mixed fracture at higher cooling rate.


2018 ◽  
Vol 3 ◽  
pp. 1-7
Author(s):  
Daniel Steiner ◽  
Bernhard Hofko

The cooling test or Thermal Stress Restrained Specimen Test (TSRST) simulates fully restrained pavements, as they occur in field for laboratory assessment of the thermal cracking resistance of asphalt mixtures. In the TSRST, cryogenic stress builds up due to cooling and prevented shrinkage until the tensile strength of the specimen is exceeded and the specimen fails by cracking. By carrying out TSRST various viscoelastic parameters, e.g. relaxation, evolution of tensile stresses, and tensile strength can be analyzed. Thus, a comprehensive view on the low temperature performance is possible. Standard TSRST is controlled by setting the cooling rate of the air within the chamber at a fixed value, e.g. -10°C/h. In thermodynamics, the actual cooling rate of objects is not only influenced by the cooling but also by external conditions like humidity, air velocity, radiation condition, etc. A current study investigates the impact of additional cooling parameters rather than just the air cooling rate. Two test machines of the same manufacturer that differ in the year of production and the setup of the climate chamber are compared. An initial wide scatter of test results from the two devices could be explained by taking thermodynamics into account and the reproducibility could be significantly enhanced.


Author(s):  
Olumide Adewole Towoju

The cooling rate of molten cast iron can make or mar it. The cooling rate plays a significant role in the resulting mechanical properties of cast iron. It determines the grain growth and size. The mechanical properties of cast iron variation along its length are achieved either with the use of different mold materials or by sectioning to ensure varied cooling rates. Mechanical properties can, however, also be varied along its length without any of these adopted methods by the incorporation of cooling channels in the mould. This study seeks to expand the frontier of this concept with the use of different cooling fluids and fluid flow rate, and numerically investigate the impact on the cooling rate of gray cast iron (class 40). The cooling curve for the cast iron was impacted by the use of different cooling fluids with the attainment of the desired mechanical properties with the selection of an appropriate cooling fluid. Also, the flow rate of the cooling fluid has an impact on the cast iron cooling rate.


Sign in / Sign up

Export Citation Format

Share Document