Effect of Cooling Rate on Microstructure and Properties of Heat-Treated Fe3Al Intermetallics

2011 ◽  
Vol 189-193 ◽  
pp. 3891-3894
Author(s):  
Ya Min Li ◽  
Hong Jun Liu ◽  
Yuan Hao

The casting Fe3Al intermetallics were solidified in sodium silicate sand mould and permanent mould respectively to get different cooling rates. After heat treatment (1000°С/15 h homogenizing annealing + furnace cooling followed by 600°С/1 h tempering + oil quenching), the microstructure and properties of Fe3Al intermetallics were investigated. The results show that the heat-treated Fe3Al intermetallics at higher cooling rate has finer grained microstructure than lower cooling rate, and the lattice distortion increases due to the higher solid solubility of the elements Cr and B at higher cooling rate. The tensile strength and hardness of the Fe3Al intermetallics at higher cooling rate are slightly higher also. However, the impact power of intermetallics at higher cooling rate is 67.5% higher than that at lower cooling rate, and the impact fracture mode is also transformed from intercrystalline fracture at lower cooling rate to intercrystallin+transcrystalline mixed fracture at higher cooling rate.

Author(s):  
Marios Kazasidis ◽  
Elisa Verna ◽  
Shuo Yin ◽  
Rocco Lupoi

AbstractThis study elucidates the performance of cold-sprayed tungsten carbide-nickel coating against solid particle impingement erosion using alumina (corundum) particles. After the coating fabrication, part of the specimens followed two different annealing heat treatment cycles with peak temperatures of 600 °C and 800 °C. The coatings were examined in terms of microstructure in the as-sprayed (AS) and the two heat-treated conditions (HT1, HT2). Subsequently, the erosion tests were carried out using design of experiments with two control factors and two replicate measurements in each case. The effect of the heat treatment on the mass loss of the coatings was investigated at the three levels (AS, HT1, HT2), as well as the impact angle of the erodents (30°, 60°, 90°). Finally, the response surface methodology (RSM) was applied to analyze and optimize the results, building the mathematical models that relate the significant variables and their interactions to the output response (mass loss) for each coating condition. The obtained results demonstrated that erosion minimization was achieved when the coating was heat treated at 600 °C and the angle was 90°.


2007 ◽  
Vol 344 ◽  
pp. 383-390 ◽  
Author(s):  
Marion Merklein ◽  
Uwe Vogt

Tailored Heat Treated Blanks (THTB) are blanks that exhibit locally different strength specifically optimized for the succeeding forming process. The strength distribution is set by a local, short-term heat treatment modifying the mechanical properties of the material. Hence, THTB allow enhancing forming limits significantly leading to shorter and more robust manufacture process chains. In order to qualify the use of THTB under quasi series conditions, the interdependencies of the blank’s local heat treatment and the entire process chain of the car body manufacture have to be analyzed. In this respect, the impact of a short-term heat treatment on the mechanical properties of AA6181PX, a commonly used aluminum alloy in today’s car bodies, was studied. Also the influence of a short-term heat treatment on the coil lubricant, usually already applied by the material supplier, was given a closer look. Based on these experiments process restrictions for the application of THTB in an industrial automotive environment were derived and a process window for the THTB design was set up. In conclusion, strategies were defined how to enhance the found process boundaries leading to a more robust process window.


1990 ◽  
Vol 112 (1) ◽  
pp. 116-123 ◽  
Author(s):  
W. J. Mills ◽  
L. D. Blackburn

Heat-to-heat and product-form variations in the JIC fracture toughness for Alloy 718 were characterized at 24, 427, and 538°C using the multiple-specimen JR-curve method. Six different material heats along with three product forms from one of the heats were tested in the modified heat treated condition. This heat treatment was developed at Idaho National Engineering Laboratory to improve the impact toughness for Alloy 718 weldments, but it has also been found to enhance the fracture resistance for the base metal. Statistical analysis of test results revealed four distinguishable JIC levels with mean toughness levels ranging from 87 to 190 kJ/m2 at 24°C. At 538°C, JIC values were 15 to 20 percent lower than room temperature toughness levels. Minimum expected values of JIC (ranging from 72 kJ/m2 at 24°C to 48 kJ/m2 at 538°C) and dJR/da (27 MPa at 24 to 538°C) were established based on tolerance intervals bracketing 90 percent of the lowest JIC and dJR/da populations at a 95 percent confidence level. Metallographic and fractographic examinations were performed to relate key microstructural features and operative fracture mechanisms to macroscopic properties.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 791
Author(s):  
Xinjie Cui ◽  
Junji Matsumura

To quickly clarify the effect of heat treatment on weatherability of Cunninghamia lanceolate (Lamb.) Hook., we investigated the surface degradation under natural exposure. A comparison between heat-treated and untreated samples was taken based on surface color changes and structural decay at each interval. Over four weeks of natural exposure, multiple measurements were carried out. Results show that color change decreased in the order of 220 °C heat-treated > untreated > 190 °C heat-treated. The results also indicate that the wood surface color stability was improved via the proper temperature of thermal modification. Low vacuum scanning electron microscopy (LVSEM) results expressed that thermal modification itself had caused shrinking in the wood surface structure. From the beginning of the weathering process, the heat treatment affected the surface structural stability. After natural exposure, the degree of wood structure decay followed the pattern 220 °C heat-treated > 190 °C heat-treated > untreated. Therefore, when considering the impact on the structure, thermal modification treatment as a protective measure to prevent weathering was not an ideal approach and requires further improvement.


2017 ◽  
Vol 24 (Supp02) ◽  
pp. 1850028
Author(s):  
BINFENG LU ◽  
YUNXIA CHEN ◽  
MENGJIA XU

(Cr, Fe)7C3/[Formula: see text]-Fe composite layer has been in situ synthesized on a low carbon steel surface by vacuum electron beam VEB irradiation. The synthesized samples were then subdued to different heat treatments to improve their impaired impact toughness. The microstructure, impact toughness and wear resistance of the heat-treated samples were studied by means of optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), microhardness tester, impact test machine and tribological tester. After heat treatment, the primary and eutectic carbides remained in their original shape and size, and a large number of secondary carbides precipitated in the iron matrix. Since the Widmanstatten ferrite in the heat affected zone (HAZ) transformed to fine ferrite completely, the impact toughness of the heat-treated samples increased significantly. The microhardness of the heat-treated samples decreased slightly due to the decreased chromium content in the iron matrix. The wear resistance of 1000[Formula: see text]C and 900[Formula: see text]C heat-treated samples was almost same with the as-synthesized sample. While the wear resistance of the 800[Formula: see text]C heat-treated one decreased slightly because part of the austenite matrix had transformed to ferrite matrix, which reduced the bonding of carbides particulates.


2014 ◽  
Vol 7 (1) ◽  
pp. 109-118
Author(s):  
Jenan Mohammed Nagie

This paper is aimed to study the effect of cooling rate on mechanical properties of Steel 35. Specimens prepared to apply tensile, torsion, impact and hardness tests.Many prepared specimens heat treated at (850ºC) for one hour and subsequently were cooled by three different media [Water-Air-furnace] to show the effect of Medias cooling rate on mechanical properties. Microstructures of all specimens examined before and after heat treatment by an optical microscopy.To figure the phases obtained after heat treatment and its effect on the mechanical properties Experimental results have shown that the microstructure of steel can be changed and significantly improved by varying line cooling rate thus, improving one property will effect on the others because of the relationship between all properties.In water media tensile, torsion and hardness improved while impact results reduced. Air media contributed in improving most of the mechanical properties because of grain size homogeneity. At furnace media ductility and impact improved


2010 ◽  
Vol 165 ◽  
pp. 104-109 ◽  
Author(s):  
Vigantas Kumšlytis ◽  
Algirdas Vaclovas Valiulis ◽  
Olegas Černašejus

Presented work analyses the impact of heat treatment parameters on the mechanical properties and operational reliability of P5 (5%Cr0.5%Mo) steel welded joints. The key objects of research are heat-treated chrome-molybdenum steel welded joints and piping elements operated at high temperature for an extensive period of time, where degradation of mechanical properties has been observed. The main objective is to investigate the causes of degradation of alloy steel mechanical properties during fabrication and operation of the equipment, and to develop a methodology for identification of optimum heat treatment parameters for chrome-molybdenum steel welded joints. A few key issues are addressed herein: identification of dependence of chrome-molybdenum (5%Cr-0.5%Mo) steel welded joint mechanical properties on heat treatment parameters, identification of the optimum value of temperature/time parameter, and identification of causes of mechanical property changes and degradation of the steel.


1930 ◽  
Vol 2 (5) ◽  
pp. 327-340
Author(s):  
R. W. Moffatt

The investigation deals with the effect of low temperatures on the impact resistance of steel castings and forgings. Low, medium and high carbon steel castings and a few alloys of vanadium, nickel, and vanadium-nickel steel castings were examined. The metals were subjected to low temperatures, both before and after heat treatment. The temperatures for the tests varied from room temperatures to temperatures well below 0° F., so as to extend below the ordinary atmospheric range of temperatures found in northern climates.It was found that the impact resistances of the metals decreased for temperatures below the freezing point. For specimens, not heat treated, the impact resistance at − 40° F. may be only one-third to one-half of that at room temperature. Heat treatment increases the impact resistance at room temperatures and temperatures below the freezing point. The impact resistance at − 40° F. for the heat-treated metal compared favorably with the impact resistance of the untreated metal at room temperature, 68° F. Heat treatment may slightly lower the yield point and the ultimate tensile strength, but it increases the ductility and the impact resistance of the metal. By proper heat treatment of steel castings the impact resistance at − 40° F. may be brought over 300% higher than that of the untreated metal at that temperature.


2016 ◽  
Vol 27 (4) ◽  
pp. 488-506 ◽  
Author(s):  
Mohammadreza Khanzadeh Gharah Shiran ◽  
Seyyed Javad Mohammadi Baygi ◽  
Seyed Rahim Kiahoseyni ◽  
Hamid Bakhtiari ◽  
Mohsen Allah Dadi

In this research, the effects of heat treatment are studied on the microstructure and mechanical properties of the explosive bonding of 304 stainless steel plates and CK45 carbon steel with a constant explosive load and various standoff distances. The samples are heat treated in a furnace for 2-h and 4-h at 250℃ and 350℃. The results imply that by increasing the standoff distance from 4 to 5 mm, the impact kinetic energy increases and severe plastic deformation occurs in the bonding interface. The metallography results indicate the wave-vortex nature of the interface with the increase of standoff distance. In addition, heat treatment for 2 h at 350℃ leads to an increase in the thicknesses of intermetallic compounds in the interface. Also, the hardness decreases from 271 to 171 Vickers, and from 279 to 195 Vickers with 2 h of heat treatment at 350℃ in samples with standoff distances of 4 and 5 mm, respectively. Furthermore, the strengths of the samples decrease from 449 to 371 MPa, and from 510 to 433 MPa, respectively. Hardness and strength changes occur due to changes in the thickness of the intermetallic area and an increase in grain sizes.


Sign in / Sign up

Export Citation Format

Share Document