scholarly journals A Survey on Recent Advances in Machine Learning Based Sleep Apnea Detection Systems

Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 914
Author(s):  
Anita Ramachandran ◽  
Anupama Karuppiah

Sleep apnea is a sleep disorder that affects a large population. This disorder can cause or augment the exposure to cardiovascular dysfunction, stroke, diabetes, and poor productivity. The polysomnography (PSG) test, which is the gold standard for sleep apnea detection, is expensive, inconvenient, and unavailable to the population at large. This calls for more friendly and accessible solutions for diagnosing sleep apnea. In this paper, we examine how sleep apnea is detected clinically, and how a combination of advances in embedded systems and machine learning can help make its diagnosis easier, more affordable, and accessible. We present the relevance of machine learning in sleep apnea detection, and a study of the recent advances in the aforementioned area. The review covers research based on machine learning, deep learning, and sensor fusion, and focuses on the following facets of sleep apnea detection: (i) type of sensors used for data collection, (ii) feature engineering approaches applied on the data (iii) classifiers used for sleep apnea detection/classification. We also analyze the challenges in the design of sleep apnea detection systems, based on the literature survey.

Author(s):  
Ahan Chatterjee ◽  
Aniruddha Mandal ◽  
Swagatam Roy ◽  
Shruti Sinha ◽  
Aditi Priya ◽  
...  

In this chapter, the authors take a walkthrough in BCI technology. At first, they took a closer look into the kind of waves that are being generated by our brain (i.e., the EEG and ECoG waves). In the next section, they have discussed about patients affected by CLIS and ALS-CLIS and how they can be treated or be benefitted using BCI technology. Visually evoked potential-based BCI technology has also been thoroughly discussed in this chapter. The application of machine learning and deep learning in this field are also being discussed with the need for feature engineering in this paradigm also been said. In the final section, they have done a thorough literature survey on various research-related to this field with proposed methodology and results.


2021 ◽  
Vol 2 (2) ◽  
pp. 1-25
Author(s):  
Stein Kristiansen ◽  
Konstantinos Nikolaidis ◽  
Thomas Plagemann ◽  
Vera Goebel ◽  
Gunn Marit Traaen ◽  
...  

Sleep apnea is a common and strongly under-diagnosed severe sleep-related respiratory disorder with periods of disrupted or reduced breathing during sleep. To diagnose sleep apnea, sleep data are collected with either polysomnography or polygraphy and scored by a sleep expert. We investigate in this work the use of supervised machine learning to automate the analysis of polygraphy data from the A3 study containing more than 7,400 hours of sleep monitoring data from 579 patients. We conduct a systematic comparative study of classification performance and resource use with different combinations of 27 classifiers and four sleep signals. The classifiers achieve up to 0.8941 accuracy (kappa: 0.7877) when using all four signal types simultaneously and up to 0.8543 accuracy (kappa: 0.7080) with only one signal, i.e., oxygen saturation. Methods based on deep learning outperform other methods by a large margin. All deep learning methods achieve nearly the same maximum classification performance even when they have very different architectures and sizes. When jointly accounting for classification performance, resource consumption and the ability to achieve with less training data high classification performance, we find that convolutional neural networks substantially outperform the other classifiers.


Author(s):  
Dmytro Tkachenko ◽  
Ihor Krush ◽  
Vitalii Mykhalko ◽  
Anatolii Petrenko

This paper contains a review and analysis of applications of modern ma-chine learning approaches to solve sleep apnea severity level detection by localization of apnea episodes and prediction of the subsequent apnea episodes. We demonstrate that signals provided by cheap wearable devices can be used to solve typical tasks of sleep apnea detection. We review major publicly available datasets that can be used for training respective deep learning models, and we analyze the usage options of these datasets. In particular, we prove that deep learning could improve the accuracy of sleep apnea classification, sleep apnea localization, and sleep apnea prediction, especially using more complex models with multimodal data from several sensors.


Author(s):  
Xianda Chen ◽  
Yifei Xiao ◽  
Yeming Tang ◽  
Julio Fernandez-Mendoza ◽  
Guohong Cao

Sleep apnea is a sleep disorder in which breathing is briefly and repeatedly interrupted. Polysomnography (PSG) is the standard clinical test for diagnosing sleep apnea. However, it is expensive and time-consuming which requires hospital visits, specialized wearable sensors, professional installations, and long waiting lists. To address this problem, we design a smartwatch-based system called ApneaDetector, which exploits the built-in sensors in smartwatches to detect sleep apnea. Through a clinical study, we identify features of sleep apnea captured by smartwatch, which can be leveraged by machine learning techniques for sleep apnea detection. However, there are many technical challenges such as how to extract various special patterns from the noisy and multi-axis sensing data. To address these challenges, we propose signal denoising and data calibration techniques to process the noisy data while preserving the peaks and troughs which reflect the possible apnea events. We identify the characteristics of sleep apnea such as signal spikes which can be captured by smartwatch, and propose methods to extract proper features to train machine learning models for apnea detection. Through extensive experimental evaluations, we demonstrate that our system can detect apnea events with high precision (0.9674), recall (0.9625), and F1-score (0.9649).


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 210 ◽  
Author(s):  
Zied Tayeb ◽  
Juri Fedjaev ◽  
Nejla Ghaboosi ◽  
Christoph Richter ◽  
Lukas Everding ◽  
...  

Non-invasive, electroencephalography (EEG)-based brain-computer interfaces (BCIs) on motor imagery movements translate the subject’s motor intention into control signals through classifying the EEG patterns caused by different imagination tasks, e.g., hand movements. This type of BCI has been widely studied and used as an alternative mode of communication and environmental control for disabled patients, such as those suffering from a brainstem stroke or a spinal cord injury (SCI). Notwithstanding the success of traditional machine learning methods in classifying EEG signals, these methods still rely on hand-crafted features. The extraction of such features is a difficult task due to the high non-stationarity of EEG signals, which is a major cause by the stagnating progress in classification performance. Remarkable advances in deep learning methods allow end-to-end learning without any feature engineering, which could benefit BCI motor imagery applications. We developed three deep learning models: (1) A long short-term memory (LSTM); (2) a spectrogram-based convolutional neural network model (CNN); and (3) a recurrent convolutional neural network (RCNN), for decoding motor imagery movements directly from raw EEG signals without (any manual) feature engineering. Results were evaluated on our own publicly available, EEG data collected from 20 subjects and on an existing dataset known as 2b EEG dataset from “BCI Competition IV”. Overall, better classification performance was achieved with deep learning models compared to state-of-the art machine learning techniques, which could chart a route ahead for developing new robust techniques for EEG signal decoding. We underpin this point by demonstrating the successful real-time control of a robotic arm using our CNN based BCI.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Muhammad Waqar ◽  
Hassan Dawood ◽  
Hussain Dawood ◽  
Nadeem Majeed ◽  
Ameen Banjar ◽  
...  

Cardiac disease treatments are often being subjected to the acquisition and analysis of vast quantity of digital cardiac data. These data can be utilized for various beneficial purposes. These data’s utilization becomes more important when we are dealing with critical diseases like a heart attack where patient life is often at stake. Machine learning and deep learning are two famous techniques that are helping in making the raw data useful. Some of the biggest problems that arise from the usage of the aforementioned techniques are massive resource utilization, extensive data preprocessing, need for features engineering, and ensuring reliability in classification results. The proposed research work presents a cost-effective solution to predict heart attack with high accuracy and reliability. It uses a UCI dataset to predict the heart attack via various machine learning algorithms without the involvement of any feature engineering. Moreover, the given dataset has an unequal distribution of positive and negative classes which can reduce performance. The proposed work uses a synthetic minority oversampling technique (SMOTE) to handle given imbalance data. The proposed system discarded the need of feature engineering for the classification of the given dataset. This led to an efficient solution as feature engineering often proves to be a costly process. The results show that among all machine learning algorithms, SMOTE-based artificial neural network when tuned properly outperformed all other models and many existing systems. The high reliability of the proposed system ensures that it can be effectively used in the prediction of the heart attack.


Author(s):  
Gagan Kukreja

Almost all financial services (especially digital payments) in China are affected by new innovations and technologies. New technologies such as blockchain, artificial intelligence, machine learning, deep learning, and data analytics have immensely influenced all most all aspects of financial services such as deposits, transactions, billings, remittances, credits (B2B and P2P), underwriting, insurance, and so on. Fintech companies are enabling larger financial inclusion, changing in lifestyle and expenditure behavior, better and fast financial services, and lots more. This chapter covers the development, opportunities, and challenges of financial sectors because of new technologies in China. This chapter throws the light on opportunities that emerged because of the large population of 1.4 billion people, high penetration, and access to the latest and affordable technology, affordable cost of smartphones, and government policies and regulations. Lastly, this chapter portrays the untapped potentials of Fintech in China.


Author(s):  
Yogita Hande ◽  
Akkalashmi Muddana

Presently, the advances of the internet towards a wide-spread growth and the static nature of traditional networks has limited capacity to cope with organizational business needs. The new network architecture software defined networking (SDN) appeared to address these challenges and provides distinctive features. However, these programmable and centralized approaches of SDN face new security challenges which demand innovative security mechanisms like intrusion detection systems (IDS's). The IDS of SDN are designed currently with a machine learning approach; however, a deep learning approach is also being explored to achieve better efficiency and accuracy. In this article, an overview of the SDN with its security concern and IDS as a security solution is explained. A survey of existing security solutions designed to secure the SDN, and a comparative study of various IDS approaches based on a deep learning model and machine learning methods are discussed in the article. Finally, we describe future directions for SDN security.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4575 ◽  
Author(s):  
Jihyun Lee ◽  
Jiyoung Woo ◽  
Ah Reum Kang ◽  
Young-Seob Jeong ◽  
Woohyun Jung ◽  
...  

Hypotensive events in the initial stage of anesthesia can cause serious complications in the patients after surgery, which could be fatal. In this study, we intended to predict hypotension after tracheal intubation using machine learning and deep learning techniques after intubation one minute in advance. Meta learning models, such as random forest, extreme gradient boosting (Xgboost), and deep learning models, especially the convolutional neural network (CNN) model and the deep neural network (DNN), were trained to predict hypotension occurring between tracheal intubation and incision, using data from four minutes to one minute before tracheal intubation. Vital records and electronic health records (EHR) for 282 of 319 patients who underwent laparoscopic cholecystectomy from October 2018 to July 2019 were collected. Among the 282 patients, 151 developed post-induction hypotension. Our experiments had two scenarios: using raw vital records and feature engineering on vital records. The experiments on raw data showed that CNN had the best accuracy of 72.63%, followed by random forest (70.32%) and Xgboost (64.6%). The experiments on feature engineering showed that random forest combined with feature selection had the best accuracy of 74.89%, while CNN had a lower accuracy of 68.95% than that of the experiment on raw data. Our study is an extension of previous studies to detect hypotension before intubation with a one-minute advance. To improve accuracy, we built a model using state-of-art algorithms. We found that CNN had a good performance, but that random forest had a better performance when combined with feature selection. In addition, we found that the examination period (data period) is also important.


Sign in / Sign up

Export Citation Format

Share Document