scholarly journals Portable X-ray Fluorescence (p-XRF) Uncertainty Estimation for Glazed Ceramic Analysis: Case of Iznik Tiles

Heritage ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 1302-1329
Author(s):  
Belgin Demirsar Arli ◽  
Gulsu Simsek Franci ◽  
Sennur Kaya ◽  
Hakan Arli ◽  
Philippe Colomban

The aim of this study is to estimate the uncertainty of a portable X-ray fluorescence (p-XRF) instrument for the (semi-quantitative) analyses of tiles with underglaze decoration. Before starting the campaign of on-site measurements, the optimum acquisition time and the most accurate calibration mode were selected. For this purpose, the elemental composition of two glass standards of NIST (SRM610 and SRM612) and a Corning A standard were measured with varied times (5–360 s) and in different calibration modes (Mining, Mining Light Elements, Soil, and Rare Earth Elements). Afterwards, a set of blue-and-white tiles that was unearthed at Iznik Tile Kilns Excavation between the dig seasons of 2015 and 2019 was examined with p-XRF by selecting ten points of measure from each layer (body, transparent glaze, and blue coloured areas). The elemental composition of different layers was evaluated by means of the intragroup and intergroup data. They were also compared to the previous studies and found that the corrosion-free, homogeneous, and non-porous surfaces decrease the relative standard deviation (RSD) by increasing the consistency of the compositional data. The major elements found in the matrix of each layer (Al and Si for the body, Pb and Sn for the glaze) have the lowest value of RSD, as expected. However, the comparison of the data with the analysis of the reference materials showed that the content of Mg and also Si, which belong to the low-Z elements group, is shifted relatively towards the higher compositional values. The impossibility of measuring the elemental composition of sodium does not hinder the classification of the samples. Although the transition metals have very low concentrations, p-XRF measurements appear rather consistent and the intrinsic scattering of the data observed for a single artefact is largely smaller than those observed for the tiles of different historical buildings. Thus, it allows the classification to be made related to the different techniques used.

1989 ◽  
Vol 33 ◽  
pp. 521-529
Author(s):  
Tomoya Arai ◽  
Takashi Shoji

In the spectroscopic analysis of composite elements by x-ray fluorescence (XRF), it is the fundamental feature of this method that the background x-ray intensity is lower than that with electron excitation. However, the background x-rays of this method, which consist of Thomson (Rayleigh) and Compton scattered x-rays from the primary radiation, impair the analytical performance at the ppm level. In order toinvestigate the intensity of the background x-rays precisely,the study was conducted in two parts. The first part compared the measured and theoretically calculated x-ray intensities for Rh Kα and Rh Kβ peaks from various materials. The second part examined the determination of low concentrations of lead,arsenic and colonium in steel samples. The variation in the background x-ray intensities of the analyzed elements was found to be caused by the variation of the major elements and a correction equation for it is derived.


2018 ◽  
Vol 28 (01n02) ◽  
pp. 35-42
Author(s):  
Rafaela Debastiani ◽  
Livio Amaral ◽  
Johnny Ferraz Dias

In this paper, a Brazilian roasted ground coffee from a popular brand was analyzed using particle-induced X-ray emission (PIXE). The elemental analysis identified elements such as Mg, Al, Si, P, S, K, Ca, Ti, Mn, Fe, Cu, Zn and Rb. While K, Mg and P are major elements, Mn, Fe, Zn and Rb were found in trace amounts. The presence of rubidium as a trace element in the samples is discussed in view of its presence in Brazilian coffee, soil and other beverages.


1968 ◽  
Vol 22 (5) ◽  
pp. 434-437 ◽  
Author(s):  
E. A. Hakkila ◽  
R. G. Hurley ◽  
G. R. Waterbury

Two methods were evaluated for determining rare earths in plutonium: (1) For the lighter rare earths ( Z≦66), or low concentrations of the heavier rare earths, an adjacent rare earth was added as a carrier and also as an internal standard, the rare earths were separated from plutonium by fluoride precipitation, and the measured intensity ratios for the sample and for solutions having known concentrations were compared. The Lβ1 x-rays were measured for the lighter rare earths and the Lα1 x rays for the remaining lanthanides. (2) For the heavier rare earths ( Z>66), the Lα1 x-ray intensities were measured from a nitric acid solution of the sample and compared to intensities obtained for solutions having known concentrations. The minimum concentrations that could be measured with a relative standard deviation no greater than 4% by the separation internal standard method varied from approximately 0.5% for lanthanum to 0.01% for lutetium. The direct measurement of x-ray intensity was much less sensitive. Applicability of the methods was shown by successful analyses of plutonium alloys containing dysprosium, thulium, or lutetium.


1986 ◽  
Vol 76 (4) ◽  
pp. 621-632 ◽  
Author(s):  
P. L. Sherlock ◽  
J. Bowden ◽  
P. G. N. Digby

AbstractEnergy dispersive X-ray spectrometry was used to make quantitative determinations of the elemental composition of plasma-ashed apterous and alate individuals of Rhopalosiphum padi (L.). The aphids were collected as fundatrigenae at various localities in England and Scotland, mostly from their main overwintering host, Prunus padus, but at one site also from P. virginiana. Robust-means principal components analysis of the data confirmed that there were differences, unrelated to source, between the elemental composition of apterae and alatae, with lower concentrations of S, K and Cl in the alatae. There were, however, no clear separations of sources in either morph except between some extreme groups; it is possible that genetic uniformity limits variation in elemental composition and, therefore, the existence of detectable source-related chemoprints in R. padi. Elements that provided some discrimination were S, Cl, Ca, Zn and possibly Al, and, except for S, their mean concentrations were all less than 1% of weight of the sample examined; difficulties in detecting differences at these low concentrations may have prevented detection of source-related chemoprints in R. padi.


2002 ◽  
Vol 56 (1) ◽  
pp. 58-61
Author(s):  
F. Bosch-Reig ◽  
J. V. Gimeno-Adelantado ◽  
S. Sánchez-Ramos ◽  
D. J. Yusá-Marco ◽  
F. Bosch-Mossi ◽  
...  

This paper is an analytical study of the possibility of applying the linear range of the substitution-dilution method to correct the matrix effect in quantitative analysis by X-ray fluorescence (XRF) spectroscopy. The analytical range is obtained from a series of samples prepared in the form of glass discs by substituting the unknown sample with a standard sample (substitution factor, h) including a diluent-melt. In general, the substitution-dilution method is hyperbolic in character and therefore the diluent is required to ensure linear behavior between If vs. h in the experimental range. The linear range is located between the concentrations of standard and unknown for each element analyzed. This linear model makes it possible to correct the matrix effect in quantitative analysis by XRF using a single multi-elemental standard for different types of samples with a complex matrix, such as geologicals and cements. The results found for Si, Ti, Al, Fe, Mn, Ca, K, and P in soil and sediment samples and Si, Fe, Al, Ca, and K in cements (white and gray) are statistically satisfactory. Thus, the mean relative standard deviation calculated for all analytes in each sample was: ±4.0% and ±5.0% in soils; ±5.0% in sediments; and ±6.0% or ±3.0% in cements, white and gray, respectively.


1992 ◽  
Vol 7 (3) ◽  
pp. 137-141 ◽  
Author(s):  
J. Dyakonov ◽  
K. Mishchenko ◽  
A. Hering ◽  
G. Unger ◽  
J. Korecký ◽  
...  

AbstractThe results of an international project involving five countries and seven laboratories performing over 400 analyses for testing the interlaboratory reproducibility and accuracy using quantitative powder diffraction are presented in this report. Four natural and four artificial mineral mixtures were examined. The RIR (reference intensity ratio) values for all mineral components were either measured or calculated. The relative standard deviation of the interlaboratory determinations range from 5 to 20 percent (for low concentrations, the relative standard deviations can attain 60% percent). Due to systematic errors, the relative standard deviations of the interlaboratory determinations generally exceed the standard deviations determined by individual laboratories. The best results were obtained when the RIR values were measured independendy in each laboratory.


2020 ◽  
Author(s):  
Michelle Lavagna ◽  
Fabrizio Fiore

<p>Assessing the chemical composition of the Moon is a key part of its investigation. Elements can be grouped according to their condensation and geochemical behavior, and thus chemical abundances of key elements can be used to asses both the origin and the evolution of the body.</p> <p>The relative abundance of the surface (down to a few µm) major elements with atomic number £20 can be estimated using X-ray fluorescence, using solar X-rays to excite element’s atoms (both quiescent Sun X-ray emission, in particular during solar maxima, and solar flares).</p> <p>Only an handle of successful X-ray fluorescence experiments have been flown so far, including Apollo15 XRFS, Chandrayaan-1 C1XS, SMART-1 D-C1XS at the Moon, Messanger-XRS, BepiColombo-MIXS at Mercury, and NEAR-XRS at EROS, Hayabusa-XRS at Itokawa, OSIRIS-REX/REXIS at Bennu (Allen et al. 2013, arXiv:1309.6665 and refs. therein).</p> <p>The main goal of fluorescent X-ray spectroscopy of asteroids is to determine the intensity of Fe-L, Fe-K, Al-K, Mg-K, Si-K complexes and S-Ka, S-Kb fluorescent lines. From these lines mass abundance ratios can be determined [Mg/Si], [Fe/Si]. The comparison of these abundance ratio to those of meteorites can understand whether the surface of the Moon resembles a particular chondritic meteorite.</p> <p>Gamma-ray spectroscopy of nuclear lines can also be used to assess abundances of elements in the planetary surface (down to 10-20cm, e.g. Reedy et al. 1978, Proc. Lunar Planet Sci. Conf. 9th 1978). The main source of gamma-ray lines are: decay of natural radionuclides, reaction induced by energetic cosmic rays, capture of low-energy neutrons, and solar-proton induced radioactivity. Gamma-ray spectroscopy can provide information on many elements, including those with high atomic number, hardly accessible to X-ray fluorescence spectroscopy. Several successful gamma-ray experiment have been performed so far, including early spectroscopy of the Moon (Luna10, Apollo15, 16), Mars (Mars-5). More recently, Kayuga gamma-ray spectrometer obtained a detailed mapping of radioactive elements on the Moon (K, Th, U), as well major elements, O, Al, Mg, Si, Ca, Ti, Fe (Yamashita et al. EPSC Abstracts Vol. 5, EPSC210-580, 2010, Hasebe et al. Proc. Int. Workshop Advances in Cosmic Ray Science J. Phys. Soc. Jpn. 78, 2009). Other lunar experiments include Lunar prospector and Chang’E. Other experiments include more Mars spectroscopy (MARS Odyssey) Mercury (Messenger) and the asteroids EROS (NEAR) and 4 Vesta (Dawn). The K/Th ratio is a diagnostic of the body bulk composition and provide information about where and when the body was formed. The collecting area of most X-ray and gamma-ray spectrometers used for planetary observations is quite small, a few cm2. The REXIS instrument working today at Bennu as a collecting area of 25cm2. The largest instrument flown so far is the Kaguya-XRS with a collecting are of 100cm2. A new miniaturize payload is here proposed, currently under development for astrophysics goals and to be installed on a 3U cubesat platform; the sensors uses GAGG scintillator crystals and Silicon Drift Detectors to both detect direct X-ray photons and optical photons produced in the scintillators by interaction with gamma-rays, and can cover a unique wide band, from a few keV to several MeV, providing at the same time both X-ray fluorescent spectroscopy and gamma-ray spectroscopy. The collecting area of a compact instrument (~3-4kg) can be conservatively ~100cm2. A passive collimator can shield the SDD from most Cosmic X-ray Background, reducing the background at energies <20keV, where it is largely dominated by the CXB. Laboratory calibration in the next few months will provide more precise numbers on the resolution achievable. The gamma-ray line sensitivity of this instruments with collecting area ~ 100 cm2 and active anticoincidences (efficiency  » twice that of Kayuga spectrometer) should therefore be a factor several better than that of other planetary gamma-ray spectrometers. The paper shows the proposed scientific mission goals around which the miniaturized payload is designed, and its possible embarking on a cubesat like space segments, 6U large; the whole feasibility study for a smallsat scientific mission is presented, showing the generality of the approach and its applicability also for small bodies exploration as well.</p>


1999 ◽  
Vol 82 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Alfredo Morabia ◽  
Alan Ross ◽  
François Curtin ◽  
Claude Pichard ◽  
Daniel O. Slosman

Dual-energy X-ray absorptiometry (DXA) is a valid technique for measuring the fat, bone and lean (muscle, organs and water) masses of the body. We evaluated relationships of BMI (kg/m2) with independent measurements of fat and lean masses using DXA in 226 adult volunteers. The evaluation was an application of a general approach to compositional data which has not previously been used for describing body composition. Using traditional regression analyses, when lean mass was held constant, BMI varied with fat mass (men r 0·75, P < 0·05 ; women r 0·85, P < 0·05); when fat mass was held constant, BMI varied with lean mass (men r 0·63, P < 0·05; women r 0·47, P < 0·05). In contrast, a regression model for compositional data revealed that BMI was: (a) strongly associated with log fat mass in both sexes (b1 4·86, P < 0·001 for all women and b1 5·96, P < 0·001 for all men); (b) not associated with bone mass, except in older men; (c) related to lean mass in women but not in men (b3 −4·04, P < 0·001 for all women and b1 −2·59, P < 0·15 for all men). Women with higher BMI tended to have more fat mass and more lean mass than women with lower BMI. Men with higher BMI had more fat mass but similar lean mass to men with lower BMI. Investigators need to be alert to the inaccuracy of BMI to assign a fatness risk factor to individuals, especially among women.


2022 ◽  
Vol 12 (2) ◽  
pp. 568
Author(s):  
Jilong Lu ◽  
Jinke Guo ◽  
Qiaoqiao Wei ◽  
Xiaodan Tang ◽  
Tian Lan ◽  
...  

Portable X-ray fluorescence spectrometry (pXRF) is an analytical technique that can be used for rapid and non-destructive analysis in the field. However, the testing accuracy and precision for trace elements are significantly affected by the matrix effect, which comes mainly from major elements that constitute most of the matrix of a sample. To solve this problem, many methods based on linear regression models have been proposed, but when extreme values or outliers occur, the application of these methods will be greatly affected. In this study, 16 certified reference materials were collected for pXRF analysis, and the major elements most closely related to the elements to be measured were employed as correction indicators to calibrate the analysis results through the application of multiple linear regression analysis. Some statistical parameters were calculated to evaluate the correction results. Compared with the calibration data obtained from simple linear regression analysis without taking major elements into account, those corrected by the new method were of higher quality, especially for elements of Co, Zn, Mo, Ta, Tl, Pb, Cd and Sn. The results show that the new method can effectively suppress the influence of the matrix effect.


1986 ◽  
Vol 40 (8) ◽  
pp. 1190-1194 ◽  
Author(s):  
A. M. E. Balaes

A method is presented for the rapid (15 to 20 min) analysis of activated carbon from carbon-in-pulp (CIP) plants for its gold content. The method involves the use of microprocessor-controlled energy-dispersive x-ray-fluorescence spectrometer, using excitation by the radioactive isotope 218Pu, and a background-ratio technique to correct for small variations in the matrix. The gold can be determined in dried granular carbon and milled carbon, provided that the calibration standards and samples are in the same physical form. It is shown that, because of the large differences in composition of the matrices of loaded and eluted carbon, two calibration curves need to be established, one for gold concentrations lower than 200 μg/g, the other for gold concentrations higher than 200 μg/g. The calibration curves for milled carbon showed less scattering of the calibration points than those for granular carbon, and the relative standard deviation of the results for milled carbon was 1% as against 2% for granular carbon.


Sign in / Sign up

Export Citation Format

Share Document