scholarly journals Effects of Aquifer Bed Slope and Sea Level on Saltwater Intrusion in Coastal Aquifers

Hydrology ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 5 ◽  
Author(s):  
Hany F. Abd-Elhamid ◽  
Ismail Abd-Elaty ◽  
Mohsen M. Sherif

The quality of groundwater resources in coastal aquifers is affected by saltwater intrusion. Over-abstraction of groundwater and seawater level rise due to climate change accelerate the intrusion process. This paper investigates the effects of aquifer bed slope and seaside slope on saltwater intrusion. The possible impacts of increasing seawater head due to sea level rise and decreasing groundwater level due to over-pumping and reduction in recharge are also investigated. A numerical model (SEAWAT) is applied to well-known Henry problem to assess the movement of the dispersion zone under different settings of bed and seaside slopes. The results showed that increasing seaside slope increased the intrusion of saltwater by 53.2% and 117% for slopes of 1:1 and 2:1, respectively. Increasing the bed slope toward the land decreased the intrusion length by 2% and 4.8%, respectively. On the other hand, increasing the bed slope toward the seaside increased the intrusion length by 3.6% and 6.4% for bed slopes of 20:1 and 10:1, respectively. The impacts of reducing the groundwater level at the land side and increasing the seawater level at the shoreline by 5% and 10% considering different slopes are studied. The intrusion length increased under both conditions. Unlike Henry problem, the current investigation considers inclined beds and sea boundaries and, hence, provides a better representation of the field conditions.

2015 ◽  
Vol 10 (3) ◽  
pp. 465-473
Author(s):  
B. M. Harley ◽  
M. Gamache ◽  
K. K. Masterson ◽  
R. H. Fitzgerald

The sustainable development and management of groundwater resources in coastal aquifers is complex and, historically, challenging to accomplish. Groundwater models play an essential role in addressing these complexities and providing the basis for planning future sustainable development. For more than 25 years, the authors have applied three-dimensional groundwater models to manage large scale coastal aquifers. The paper will present case studies demonstrating the application of groundwater models to evaluate conditions in complex coastal environments and to develop sustainable groundwater management strategies. These studies include Long Island, a sole source aquifer system in New York serving nearly 3 million people; aquifers in Southern California where injection barriers are used to prevent saltwater intrusion; and Savannah, Georgia in the southeastern US, where concentrated groundwater pumping has contributed to saltwater intrusion at a nearby resort island, and planning is underway to ensure a sustainable groundwater supply to both local industries and municipalities.


2021 ◽  
Vol 9 ◽  
Author(s):  
Willard S. Moore ◽  
Samantha B. Joye

Intrusion of saltwater into freshwater coastal aquifers poisons an essential resource. Such intrusions are occurring along coastlines worldwide due largely to the over-pumping of freshwater and sea level rise. Saltwater intrusion impacts drinking water, agriculture and industry, and causes profound changes in the biogeochemistry of the affected aquifers, the dynamic systems called subterranean estuaries. Subterranean estuaries receive freshwater from land and saltwater from the ocean and expose this fluid mixture to intense biogeochemical dynamics as it interacts with the aquifer and aquiclude solids. Increased saltwater intrusion alters the ionic strength and oxidative capacity of these systems, resulting in elevated concentrations of certain chemical species in the groundwater, which flows from subterranean estuaries into the ocean as submarine groundwater discharge (SGD). These highly altered fluids are enriched in nutrients, carbon, trace gases, sulfide, metals, and radionuclides. Seawater intrusion expands the subterranean estuary. Climate change amplifies sea level variations on short and seasonal time scales. These changes may result in higher SGD fluxes, further accelerating release of nutrients and thus promoting biological productivity in nutrient-depleted waters. But this process may also adversely affect the environment and alter the local ecology. Research on saltwater intrusion and SGD has largely been undertaken by different groups. We demonstrate that these two processes are linked in ways that neither group has articulated effectively to date.


2021 ◽  
Author(s):  
Maria Elisa Travaglino ◽  
Pietro Teatini

<p>Saltwater intrusion in coastal aquifers is one of the most challenging and worldwide environmental problems, severely affected by human activities and climate change. It represents a threat to the quality and sustainability of fresh groundwater resources in coastal aquifers. Saline water is the most common pollutant in fresh groundwater which can also compromise the agriculture and the economy of the affected regions. Therefore, it is necessary to develop engineering solutions to restore groundwater quality or at least to prevent further degradation of its quality.</p><p>For this purpose, the goal of the Interreg Italy – Croatia MoST (MOnitoring Sea-water intrusion in coastal aquifers and Testing pilot projects for its mitigation) project is to test possible solutions (such as underground barriers, cut-off walls, recharge wells and recharge drains) against saltwater intrusion properly supported by field characterization, laboratory experiments, monitoring of hydrological parameters, and numerical models.</p><p>This works shows the preliminary results of an ongoing modelling study carried out for a coastal farmland at Ca’ Pasqua, in the southern part of the Venice lagoon, in Italy. A three-dimensional finite-element density-dependent groundwater flow and transport model is developed to simulate the dynamics of saltwater intrusion in this lowlying area. The model is used to assess the potential effects of a recharge drain recently established at 1.5 m depth along a sandy paleochannel crossing the organic-silty area. The goal of the intervention is to mitigate the soil and groundwater salinization by spreading freshwater supplied by a nearby canal. The beneficial consequences of the recharge drain should be enhanced by the higher permeability of the paleochannel.</p>


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1820
Author(s):  
Il Hwan Kim ◽  
Il-Moon Chung ◽  
Sun Woo Chang

Climate change and anthropogenic activities are necessitating accurate diagnoses of seawater intrusion (SWI) to ensure the sustainable utilization of groundwater resources in coastal areas. Here, vulnerability to SWI was assessed by classifying the existing GALDIT into static parameters (groundwater occurrence (G), aquifer hydraulic conductivity (A), and distance from shore (D)) and dynamic parameters (height to groundwater-level above sea-level (L), impact of existing status of seawater intrusion (I), and aquifer thickness (T)). When assessing the vulnerability of SWI based on observational data (2010–2019), 10-year-averaged data of each month is used for GALDIT dynamic parameter for representing the seasonal characteristics of local water cycles. In addition, the parameter L is indicated by the data observed at the sea-level station adjacent to the groundwater level station. The existing GALDIT method has a range of scores that can be divided into quartiles to express the observed values. To sensitively reflect monthly changes in values, the range of scores is divided into deciles. The calculated GALDIT index showed that the most vulnerable month is September, due to relatively low groundwater level. The proposed method can be used to apply countermeasures to vulnerable coastal areas and build water resources management plan considering vulnerable seasons.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2496
Author(s):  
Mohammed Adil Sbai ◽  
Abdelkader Larabi ◽  
Marwan Fahs ◽  
Joanna Doummar

The vulnerability of coastal aquifers to seawater intrusion has been largely relying on data-driven indexing approaches despite their shortcomings to depict the complex processes of groundwater flow and mass transport under variable velocity conditions. This paper introduces a modelling-based alternative technique relying on a normalized saltwater age vulnerability index post-processed from results of a variable density flow simulation. This distributed index is obtained from the steady-state distribution of the salinity and a restriction of the mean groundwater age to a mean saltwater age distribution. This approach provides a novel way to shift from the concentration space into a vulnerability assessment space to evaluate the threats to coastal aquifers. The method requires only a sequential numerical solution of two steady state sets of equations. Several variants of the hypothetical Henry problem and a case study in Lebanon are selected for demonstration. Results highlight this approach ability to rank, compare, and validate different scenarios for coastal water resources management. A novel concept of zero-vulnerability line/surface delineating the coastal area threatened by seawater intrusion has shown to be relevant for optimal management of coastal aquifers and risk assessments. Hence, this work provides a new tool to sustainably manage and protect coastal groundwater resources.


2016 ◽  
Vol 33 (8) ◽  
pp. 2546-2564 ◽  
Author(s):  
Ismail Abd-Elaty ◽  
Hany Farhat Abd Elhamid ◽  
Akbar Javadi

Purpose The purpose of this paper is to develop and validate a numerical model to study the effect of changing hydraulic parameters on saltwater intrusion in coastal aquifers. Design/methodology/approach The numerical model SEAWAT is validated and applied to a hypothetical case (Henry problem) and a real case study (Biscayne aquifer, Florida, USA) for different values of hydraulic parameters including; hydraulic conductivity, porosity, dispersion, diffusion, fluid density and solute concentration. The dimensional analysis technique is used to correlate these parameters with the intrusion length. Findings The results show that the hydraulic parameters have a clear effect on saltwater intrusion as they increase the intrusion in some cases and decrease it in some other cases. The results indicate that changing hydraulic parameters may be used as a control method to protect coastal aquifers from saltwater intrusion. Practical implications The results of the application of the model to the Biscayne aquifer in Florida showed that the intrusion can be reduced to 50 percent when the hydraulic conductivity is reduced to 50 percent. Decreasing hydraulic conductivity by injecting some relatively cheap materials such as bentonite can help to reduce the intrusion of saltwater. So the saltwater intrusion can be reduced with relatively low cost through changing some hydraulic parameters. Originality/value A relationship to calculate intrusion length in coastal aquifer is developed and the impact of different hydraulic parameters on saltwater intrusion is highlighted. Control of saltwater intrusion using relatively cheap method is presented.


2016 ◽  
Vol 17 (2) ◽  
pp. 311-323 ◽  
Author(s):  
Hany F. Abd-Elhamid

Seawater intrusion is considered one of the main processes that degrade water quality by raising salinity. Over-pumping and decreasing recharge are considered the main causes of saltwater intrusion. Moreover, climate change and sea-level rise accelerate saltwater intrusion. In this paper SEAWAT code was used to study groundwater flow and seawater intrusion in the Eastern Nile Delta aquifer considering four scenarios of climate change including sea-level rise, increasing abstraction, decreasing recharge and the combination of these scenarios. The results showed that decreasing recharge has a significant effect on seawater intrusion. However, the combinations of these scenarios resulted in harmful intrusion and loss of groundwater. The soil salinity increased, which decreased agricultural production. The control of seawater intrusion and protection of groundwater resources and soil is very important. Different scenarios were implemented to protect the aquifer from seawater intrusion including decreasing abstraction, increasing recharge, abstracting brackish water and the combination of these three scenarios. The abstraction of brackish water gave a higher reduction of seawater intrusion and decreased groundwater table in the aquifer near the shore line, which protected the soil from salinity and increased agricultural production. However, the combination of these three scenarios gave the highest reduction of seawater intrusion.


Sign in / Sign up

Export Citation Format

Share Document