scholarly journals Monitoring and Management Strategies for <em>Halyomorpha halys </em>(Hemiptera: Pentatomidae) a Newly Invaded Insect Pest of Specialty Crops in Florida

2021 ◽  
Author(s):  
Muhammad Haseeb ◽  
Sharise James ◽  
Jesusa Legaspi ◽  
Lambert Kanga
Author(s):  
Lu-Lu Li ◽  
Ji-Wei Xu ◽  
Wei-Chen Yao ◽  
Hui-Hui Yang ◽  
Youssef Dewer ◽  
...  

Abstract The tobacco cutworm Spodoptera litura (Lepidoptera: Noctuidae) is a polyphagous pest with a highly selective and sensitive chemosensory system involved in complex physiological behaviors such as searching for food sources, feeding, courtship, and oviposition. However, effective management strategies for controlling the insect pest populations under threshold levels are lacking. Therefore, there is an urgent need to formulate eco-friendly pest control strategies based on the disruption of the insect chemosensory system. In this study, we identified 158 putative chemosensory genes based on transcriptomic and genomic data for S. litura, including 45 odorant-binding proteins (OBPs, nine were new), 23 chemosensory proteins (CSPs), 60 odorant receptors (ORs, three were new), and 30 gustatory receptors (GRs, three were new), a number higher than those reported by previous transcriptome studies. Subsequently, we constructed phylogenetic trees based on these genes in moths and analyzed the dynamic expression of various genes in head capsules across larval instars using quantitative real-time polymerase chain reaction. Nine genes–SlitOBP8, SlitOBP9, SlitOBP25, SlitCSP1, SlitCSP7, SlitCSP18, SlitOR34, SlitGR240, and SlitGR242–were highly expressed in the heads of 3- to 5-day-old S. litura larvae. The genes differentially expressed in olfactory organs during larval development might play crucial roles in the chemosensory system of S. litura larvae. Our findings substantially expand the gene inventory for S. litura and present potential target genes for further studies on larval feeding in S. litura.


2016 ◽  
Vol 45 (2) ◽  
pp. 472-478 ◽  
Author(s):  
Anne L. Nielsen ◽  
Galen Dively ◽  
John M. Pote ◽  
Gladis Zinati ◽  
Clarissa Mathews

Sociobiology ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 5813
Author(s):  
Matan Shelomi ◽  
Bo-Jun Qiu ◽  
Lin-Ting Huang

An accumulation of questionable scientific reports on the use of natural plant extracts to control household pest insects, using biologically irrelevant experimental designs and extremely high concentrations, has resulted in a publication bias: “promising” studies claiming readily available plants can repel various insects, including social insects, despite no usable data to judge cost-effectiveness or sustainability in a realistic situation. The Internet provides a further torrent of untested claims, generating a background noise of misinformation. An example is the belief that cucumbers are “natural” ant repellent, widely reported in such informal literature, despite no direct evidence for or against this claim. We tested this popular assertion using peel extracts of cucumber and the related bitter melon as olfactory and gustatory repellents against ants. Extracts of both fruit peels in water, methanol, or hexane were statistically significant but effectively weak gustatory repellents. Aqueous cucumber peel extract has a significant but mild olfactory repellent effect: about half of the ants were repelled relative to none in a control. While the myth may have a grain of truth to it, as cucumber does have a mild but detectable effect on ants in an artificial setup, its potential impact on keeping ants out of a treated perimeter would be extremely short-lived and not cost-effective. Superior ant management strategies are currently available. The promotion of “natural” products must be rooted in scientific evidence of a successful and cost-effective implementation prospect.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1189-1195 ◽  
Author(s):  
Joseph Opoku ◽  
Nathan M. Kleczewski ◽  
Kelly A. Hamby ◽  
D. Ames Herbert ◽  
Sean Malone ◽  
...  

Brown marmorated stink bug (Halyomorpha halys Stål) is an invasive agricultural pest that causes severe damage to many crops. To determine potential associations between H. halys feeding damage, Fusarium infection, and mycotoxin contamination in field corn, a field survey was conducted in eight counties in Virginia. Results indicated an association between H. halys feeding damage and fumonisin contamination. Subsequent field experiments in Delaware, Maryland, and Virginia examined the ability of H. halys to increase Fusarium verticillioides (Sacc.) Nirenberg infection and fumonisin concentrations in corn. At the milk stage, H. halys (0 or 4 adults) and Fusarium (with or without F. verticillioides inoculum) treatments were applied to bagged ears in a two by two factorial randomized complete block design with 12 replicates. H. halys treatments increased levels of feeding damage (P < 0.0001) and Fusarium infection (P = 0.0380). Interaction between H. halys and Fusarium treatments influenced severity of infection (P = 0.0018) and fumonisin concentrations (P = 0.0360). Results suggest H. halys has the ability to increase both Fusarium infection and fumonisin concentrations in field corn. Further studies are needed to understand mechanisms by which H. halys increases fumonisin and to develop management strategies to mitigate impacts of H. halys on field corn in the region.


2017 ◽  
Vol 9 (4) ◽  
pp. 1994-2003
Author(s):  
Hemant Sharma ◽  
Maha Singh Jaglan ◽  
S. S. Yadav

Biology of pink stem borer, Sesamia inferens (Walker) (Lepidoptera: Noctuidae) was conducted during 2015-16 in laboratories of CCS Haryana Agricultural University, Regional Research Station, Karnal on HQPM 1 (hybrid) and HKI 1128 (inbred) for two generations at room temperature. Results on biology of S. inferens in the first generation revealed that incubation period varied from 10-14 days on HQPM 1 and 11-15 days on HKI 1128. The larval duration lasted for 21-37 days on HQPM 1 and 24-39 days on HKI 1128. The adult longevity of male and female ranged from 6-7 days and 7-8 days on HQPM 1 and 5-7 days and 6-7 days on HKI 1128, respectively. The total life span ranged from 63-72 days for female and 45-58 days for male on HQPM 1 and 65-74 days for female and 49-62 days for male on HKI 1128, respectively in the first generation. The total life span in second generation ranged 94-107 days for female and 83-96 days for male on HQPM 1 and 98-112 days for female and 86-101 days for male on HKI 1128. The biology of an insect pest is a condition precedent to find out its management strategies. The biology of S. inferens on maize has not yet been studied in north western part of the country. Having regards to the fact that no systematic work on this aspect has been carried out, studies were conducted on biology of this pest for developing efficient pest management strategies.


2020 ◽  
Vol 65 (1) ◽  
pp. 293-311 ◽  
Author(s):  
Kun Yan Zhu ◽  
Subba Reddy Palli

The RNA interference (RNAi) triggered by short/small interfering RNA (siRNA) was discovered in nematodes and found to function in most living organisms. RNAi has been widely used as a research tool to study gene functions and has shown great potential for the development of novel pest management strategies. RNAi is highly efficient and systemic in coleopterans but highly variable or inefficient in many other insects. Differences in double-stranded RNA (dsRNA) degradation, cellular uptake, inter- and intracellular transports, processing of dsRNA to siRNA, and RNA-induced silencing complex formation influence RNAi efficiency. The basic dsRNA delivery methods include microinjection, feeding, and soaking. To improve dsRNA delivery, various new technologies, including cationic liposome–assisted, nanoparticle-enabled, symbiont-mediated, and plant-mediated deliveries, have been developed. Major challenges to widespread use of RNAi in insect pest management include variable RNAi efficiency among insects, lack of reliable dsRNA delivery methods, off-target and nontarget effects, and potential development of resistance in insect populations.


2020 ◽  
Vol 113 (5) ◽  
pp. 2061-2068
Author(s):  
Jia-Wei Tay ◽  
Dong-Hwan Choe ◽  
Ashok Mulchandani ◽  
Michael K Rust

Abstract Here, we review the literature on the development and application of hydrogel compounds for insect pest management. Researchers have used hydrogel compounds for the past few decades to achieve the controlled release of various contact insecticides, but in recent years, hydrogel compounds have also been used to absorb and deliver targeted concentrations of toxicants within a liquid bait to manage insect pests. The highly absorbent hydrogel acts as a controlled-release formulation that keeps the liquid bait available and palatable to the target pests. This review discusses the use of various types of hydrogel compounds in pest management based on different environmental settings (e.g., agricultural, urban, and natural areas), pest systems (e.g., different taxa), and modes of insecticide delivery (e.g., spray vs bait). Due to their unique physicochemical properties, hydrogel compounds have great potential to be developed into new and efficacious pest management strategies with minimal environmental impact. We will also discuss the future research and development of hydrogels in this review.


2018 ◽  
Vol 12 (4) ◽  
pp. 273-282 ◽  
Author(s):  
Saber Delpasand Khabbazi ◽  
Afsaneh Delpasand Khabbazi ◽  
S. Fatih Özcan ◽  
Allah Bakhsh ◽  
Dilek Başalma ◽  
...  

2020 ◽  
Vol 4 ◽  
Author(s):  
Randa Jabbour ◽  
Shiri Noy

Pest management strategies involve a complex set of considerations, circumstances, and decision-making. Existing research suggests that farmers are reflexive and reflective in their management choices yet continue to employ curative rather than preventative strategies, and opt for chemical over biological solutions. In this piece, we detail work from a two-year, multidisciplinary, mixed-methods study of insect pest management strategies in alfalfa in Wyoming, integrating data from four focus groups, a statewide survey, and biological sampling of production fields. We outline how these different sources of data together contribute to a more complete understanding of the challenges and strategies employed by farmers, and specifically on biological pest control. We applied this approach across alfalfa hay and seed crop systems. Relatively few farmers acknowledged biological control in focus groups or surveys, yet biological exploration yielded abundant parasitism of common pest alfalfa weevil. On the other hand, parasitism of seed alfalfa pest Lygus was far less common and patchy across fields. It is only in integrating quantitative and qualitative, biological and social data that we are able to generate a more complete portrait of the challenges and opportunities of working with farmers to embrace a preventative paradigm. In doing so, we offer insights on possible barriers to the adoption of preventative insect management strategies and provide a case study of integrating social science and biophysical techniques to better understand opportunities to expand biological pest control in cropping systems.


2016 ◽  
Vol 30 (3) ◽  
pp. 708-716 ◽  
Author(s):  
Lynn M. Sosnoskie ◽  
Bradley D. Hanson

Field bindweed is a deep-rooted and drought-tolerant perennial that can be difficult to control once it has become established in specialty crops. Field studies were conducted in 2013 and 2014 to evaluate the efficacy of currently registered preplant (PP), PPI, PRE, and POST herbicides for field bindweed management in both early and late-planted processing tomatoes. Results show that bindweed cover in PPI/PRE programs (trifluralin, alone or in combination with rimsulfuron;S-metolachlor; or sulfentrazone) was reduced > 50% in early planted tomatoes, relative to the no PPI/PRE herbicide treatment (0 to 31% cover at up to 6 wk after transplanting [WAT]). Similar trends were observed with respect to field bindweed density. PP applications of glyphosate to emerged bindweed in late-planted tomatoes, coupled with PPI/PRE herbicide applications, reduced weed cover (1 to 13% at up to 6 WAT) by more than one-half when compared with plots treated with residual herbicides alone (1 to 43% at up to 6 WAT); perennial vine density was also reduced > 50%. PP herbicide burndown applications and the use of residual products can significantly improve the suppression of field bindweed in processing tomato systems. The emergence and vigor of bindweed vines may differ with respect to the timing of transplant operations and should be considered when developing management strategies


Sign in / Sign up

Export Citation Format

Share Document