scholarly journals Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus Aureus Clinical Strains

Author(s):  
Maria Miklasińska-Majdanik ◽  
Małgorzata Kępa ◽  
Robert Wojtyczka ◽  
Danuta Idzik ◽  
Tomasz Wąsik

There is a growing body of evidence that flavonoids show antibacterial activity against both Gram-positive and Gram-negative bacteria. The mechanisms of action of phenolic compounds on bacterial cell have been partially attributed to damage to the bacterial membrane, inhibition of virulence factors such as enzymes and toxins, and suppression of bacterial biofilm formation. What is more, some natural polyphenols, aside from direct antibacterial activity, exert a synergistic effect when combined with common chemotherapeutics. Many studies have proved that in synergy with antibiotics plant flavonoids pose a promising alternative for therapeutic strategies against drug resistant bacteria. In this review most recent reports on antimicrobial action of polyphenols on Staphylococcus aureus strains are described, highlighting where proven, the mechanisms of action and the structure–activity relationships. Since many reports in this field are, to some extent, conflicting, a unified in vitro and in vivo susceptibility testing algorithms should be introduced to ensure the selection of effective antibacterial polyphenolic compounds with low cytotoxicity and minimal side effects.

2010 ◽  
Vol 5 (8) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Tamara R. Calvo ◽  
Diego Demarco ◽  
Fabio V. Santos ◽  
Helen P. Moraes ◽  
Taís M. Bauab ◽  
...  

Phenolic compounds are produced by secretory idioblasts and hypodermis, and by specialized cells of the epidermis and chlorenchyma of leaves of Alchornea triplinervia. Phytochemical investigation of these leaves led to the isolation of the known substances quercetin, quercetin-7- O-β-D-ghicopyranoside, quercetin-3- O-β-D-glucopyranoside, quercetin-3- O-β-D-galactopyranoside, quercetin-3- O-α-L-arabinopyranoside, amentoflavone, brevifolin carboxylic acid, gallic acid, and methyl gallate from the methanolic extract, and stigmasterol, campesterol, sitosterol, lupeol, friedelan-3-ol, and friedelan-3-one from the chloroform extract. In studies of antibacterial activity and mutagenicity, the methanolic extract showed promising activity against Staphylococcus aureus (MIC=62.5 μg/mL) and was slightly mutagenic in vitro and in vivo at the highest concentrations tested (1335 mg/kg b.w.).


2021 ◽  
Vol 22 (6) ◽  
pp. 3253
Author(s):  
Clarisse Roblin ◽  
Steve Chiumento ◽  
Cédric Jacqueline ◽  
Eric Pinloche ◽  
Cendrine Nicoletti ◽  
...  

The world is on the verge of a major antibiotic crisis as the emergence of resistant bacteria is increasing, and very few novel molecules have been discovered since the 1960s. In this context, scientists have been exploring alternatives to conventional antibiotics, such as ribosomally synthesized and post-translationally modified peptides (RiPPs). Interestingly, the highly potent in vitro antibacterial activity and safety of ruminococcin C1, a recently discovered RiPP belonging to the sactipeptide subclass, has been demonstrated. The present results show that ruminococcin C1 is efficient at curing infection and at protecting challenged mice from Clostridium perfringens with a lower dose than the conventional antibiotic vancomycin. Moreover, antimicrobial peptide (AMP) is also effective against this pathogen in the complex microbial community of the gut environment, with a selective impact on a few bacterial genera, while maintaining a global homeostasis of the microbiome. In addition, ruminococcin C1 exhibits other biological activities that could be beneficial for human health, as well as other fields of applications. Overall, this study, by using an in vivo infection approach, confirms the antimicrobial clinical potential and highlights the multiple functional properties of ruminococcin C1, thus extending its therapeutic interest.


2018 ◽  
Vol 7 (4) ◽  
pp. 392-398
Author(s):  
B.T Yunana ◽  
◽  
B. B Bukar ◽  
J. C Aguiyi ◽  
◽  
...  

The ethanol extracts of root, bark and leaf of Bridelia ferruginea was investigated for antibacterial activity against clinical isolate of Staphylococcus aureus and Escherichia coli. The extracts had significant antibacterial activity in vitro at concentration of 25 mg/ml, 50 mg/ml, 100 mg/ml and 200 mg/ml and in vivo at dose of 50 mg/kg and 100 mg/kg. The root extract in vitro had the highest zone of inhibition, followed by the bark extract for both Staphylococcus aureus and Escherichia coli. The concentration of 200 mg/ml had the highest zone of inhibition in vitro. The minimum inhibitory concentration (MIC) showed a decreasing inhibitory effect of the plant extracts for both Staphylococcus aureus and Escherichia coli as the concentration decreases with root having 3.125 mg/ml, bark having 6.25 mg/ml and leaf having 25 mg/ml for Staphylococcus aureus and Escherichia coli. Likewise, the minimum bactericidal concentration (MBC) showed decreasing bactericide effects with decrease concentration with root having 12.5 mg/ml, bark having 12.5 mg/ml and leaf having 25 mg/ml for Escherichia coli while root had 6.25mg/ml, bark had 12.5mg/ml and leaf had 25mg/ml for Staphylococcus aureus. The in vivo investigation showed that the root and bark extract exhibited antibacterial activity on both Staphylococcus aureus and Escherichia coli at doses of 100mg/kg and 50mg/kg; the root extract had higher activity than the bark and root/bark combined. The dose of 100 mg/kg had the highest colonies reduction for Staphylococcus aureus and Escherichia coli in vivo. Preliminary phytochemical screening of root, bark and leaves of Bridelia ferruginea revealed the presence of tannins, flavonoids, carbohydrates, cardiac glycoside (root, bark and leaves), saponins (root and bark). The presence of tannins, saponins, flavonoid, cardiac glycoside and carbohydrate in the bark and root extracts of the plant indicates that the bark and root extracts were pharmacological importance


2015 ◽  
Vol 82 (1) ◽  
pp. 394-401 ◽  
Author(s):  
Jakub Kwiecinski ◽  
Manli Na ◽  
Anders Jarneborn ◽  
Gunnar Jacobsson ◽  
Marijke Peetermans ◽  
...  

ABSTRACTStaphylococcus aureusbiofilm infections of indwelling medical devices are a major medical challenge because of their high prevalence and antibiotic resistance. As fibrin plays an important role inS. aureusbiofilm formation, we hypothesize that coating of the implant surface with fibrinolytic agents can be used as a new method of antibiofilm prophylaxis. The effect of tissue plasminogen activator (tPA) coating onS. aureusbiofilm formation was tested within vitromicroplate biofilm assays and anin vivomouse model of biofilm infection. tPA coating efficiently inhibited biofilm formation by variousS. aureusstrains. The effect was dependent on plasminogen activation by tPA, leading to subsequent local fibrin cleavage. A tPA coating on implant surfaces prevented both early adhesion and later biomass accumulation. Furthermore, tPA coating increased the susceptibility of biofilm infections to antibiotics.In vivo, significantly fewer bacteria were detected on the surfaces of implants coated with tPA than on control implants from mice treated with cloxacillin. Fibrinolytic coatings (e.g., with tPA) reduceS. aureusbiofilm formation bothin vitroandin vivo, suggesting a novel way to prevent bacterial biofilm infections of indwelling medical devices.


Author(s):  
Cong Yao ◽  
Meisong Zhu ◽  
Xiuguo Han ◽  
Qiang Xu ◽  
Min Dai ◽  
...  

Post-operative infections in orthopaedic implants are severe complications that require urgent solutions. Although conventional antibiotics limit bacterial biofilm formation, they ignore the bone loss caused by osteoclast formation during post-operative orthopaedic implant-related infections. Fortunately, enoxacin exerts both antibacterial and osteoclast inhibitory effects, playing a role in limiting infection and preventing bone loss. However, enoxacin lacks specificity in bone tissue and low bioavailability-related adverse effects, which hinders translational practice. Here, we developed a nanosystem (Eno@MSN-D) based on enoxacin (Eno)-loaded mesoporous silica nanoparticles (MSN), decorated with the eight repeating sequences of aspartate (D-Asp8), and coated with polyethylene glycol The release results suggested that Eno@MSN-D exhibits a high sensitivity to acidic environment. Moreover, this Eno@MSN-D delivery nanosystem exhibited both antibacterial and anti-osteoclast properties in vitro. The cytotoxicity assay revealed no cytotoxicity at the low concentration (20 μg/ml) and Eno@MSN-D inhibited RANKL-induced osteoclast differentiation. Importantly, Eno@MSN-D allowed the targeted release of enoxacin in infected bone tissue. Bone morphometric analysis and histopathology assays demonstrated that Eno@MSN-D has antibacterial and antiosteoclastic effects in vivo, thereby preventing implant-related infections and bone loss. Overall, our study highlights the significance of novel biomaterials that offer new alternatives to treat and prevent orthopaedic Staphylococcus aureus-related implantation infections and bone loss.


2009 ◽  
Vol 53 (11) ◽  
pp. 4712-4717 ◽  
Author(s):  
Céline Vidaillac ◽  
Steve N. Leonard ◽  
Michael J. Rybak

ABSTRACT Ceftaroline is a broad-spectrum injectable cephalosporin exhibiting bactericidal activity against a variety of bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Using a two-compartment in vitro pharmacokinetic/pharmacodynamic (PK/PD) model, we evaluated the activity of ceftaroline at 600 mg every 8 h (q8h) and q12h in comparison with that of vancomycin at 1,000 mg q12h over a 72-h time period against six clinical MRSA isolates, including two heterogeneous vancomycin-intermediate S. aureus (hVISA) isolates. The MIC and minimum bactericidal concentration ranged between 0.125 to 2 and 0.5 to 2 μg/ml for ceftaroline and vancomycin, respectively. In the PK/PD model, ceftaroline was superior to vancomycin against all isolates (P < 0.05), except one to which it was equivalent. No difference in activity was observed between both q8 and q12h dosing regimens of ceftaroline. Bacterial regrowth was observed after 32 h for two isolates treated with ceftaroline. This regrowth was uncorrelated to resistance, instability of the drug, or tolerance. However, subpopulations with higher MICs to ceftaroline were found by population analysis for these two isolates. Finally, and in contrast to ceftaroline, MIC elevations up to 8 to 12 μg/ml were observed with vancomycin for the hVISA isolates. In conclusion, in addition to a lower potential to select resistant mutants, ceftaroline demonstrated activity equal to or greater than vancomycin against MRSA isolates. Although further in vitro and in vivo investigations are warranted, ceftaroline appears to be a promising alternative for the treatment of MRSA infections.


Antibiotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 40 ◽  
Author(s):  
Logan L. Newstead ◽  
Katarina Varjonen ◽  
Tim Nuttall ◽  
Gavin K. Paterson

Staphylococcus aureus is an important pathogen of both humans and animals, implicated in a wide range of infections. The emergence of antibiotic resistance has resulted in S. aureus strains that are resistant to almost all available antibiotics, making treatment a clinical challenge. Development of novel antimicrobial approaches is now a priority worldwide. Bacteria produce a range of antimicrobial peptides; the most diverse of these being bacteriocins. Bacteriocins are ribosomally synthesised peptides, displaying potent antimicrobial activity usually against bacteria phylogenetically related to the producer strain. Several bacteriocins have been isolated from commensal coagulase-negative staphylococci, many of which display inhibitory activity against S. aureus in vitro and in vivo. The ability of these bacteriocins to target biofilm formation and their novel mechanisms of action with efficacy against antibiotic-resistant bacteria make them strong candidates as novel therapeutic antimicrobials. The use of genome-mining tools will help to advance identification and classification of bacteriocins. This review discusses the staphylococcal-derived antimicrobial peptides displaying promise as novel treatments for S. aureus infections.


2020 ◽  
Vol 10 (01) ◽  
pp. 106-113
Author(s):  
Hussain A. Hamza ◽  
Nasreen R. Jber

Methicillin-resistant Staphylococcus aureus (MRSA) is a S. aureus that resistant to β-lactam antibiotics (e.g., Cefoxitin and Oxacillin). MRSA has a tremendous capacity to develop resistance to other classes of antibiotics and forming a real threat to patients. The process of exploring a new tactic of non-antibiotic treatments has become an urgent need. A bacteriophage is one of the possible treatments that strongly suggested. Bacteriophages are viruses that infect bacteria as a natural host with a bactericidal capability against multidrug-resistant bacteria that do not respond to conventional antibiotics. The current study investigates the lytic efficacy of phage-cocktail in vitro, specifically against S. aureus isolated from skin infections and find out the possible association of phage-antibiotic resistance. A total of 43 isolates of Methicillin-resistant staphylococcus aureus were isolated from skin infections. The isolates are distributed as (10 isolates of burn, 4 isolates of diabetic foot ulcer, 7 isolates of surgical wounds, 3 isolates of pressure ulcer, and 19 of skin and soft tissue infection). The isolates exhibited variant antibiotic susceptibility against 12 antibiotics (Cefoxitin FOX, Vancomycin VAN, Oxacillin OX, Rifampin RA, Chloramphenicol C, Nitrofurantoin F, Clindamycin DA, Azithromycin AZM, Amikacin AK, Trimethoprim-sulfamethoxazole SXT, Ciprofloxacin CIP, and Gentamicin CN). A bacteriophage cocktail was isolated using a phage-enrichment technique, high titer phage lysate (5*109 pfu/ml) was obtained and investigated against 43 MRSA isolates. The phage-cocktail showed high specificity to S. aureus but variable susceptibility to 43 MRSA isolates. It was observed that there was no association (p greater than 0.05) between phage and antibiotic resistance of (FOX, OX, VAN, RA, C, F, and DA) where the significant association was observed (p less than 0.05) with (AZM, AK, SXT, CIP, and CN). Significantly, the more antibiotic-resistant isolates exhibited more sensitivity to phage-cocktail, which represents a promising alternative to antibiotics that do not affect with increasing antibiotic resistance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marte Jenssen ◽  
Philip Rainsford ◽  
Eric Juskewitz ◽  
Jeanette H. Andersen ◽  
Espen H. Hansen ◽  
...  

The emergence of drug-resistant bacteria is increasing rapidly in all parts of the world, and the need for new antibiotics is urgent. In our continuous search for new antimicrobial molecules from under-investigated Arctic marine microorganisms, a marine fungus belonging to the family Lulworthiaceae (Lulworthiales, Sordariomycetes, and Ascomycota) was studied. The fungus was isolated from driftwood, cultivated in liquid medium, and studied for its potential for producing antibacterial compounds. Through bioactivity-guided isolation, a novel sulfated biarylic naphtho-α-pyrone dimer was isolated, and its structure was elucidated by spectroscopic methods, including 1D and 2D NMR and HRMS. The compound, named lulworthinone (1), showed antibacterial activity against reference strains of Staphylococcus aureus and Streptococcus agalactiae, as well as several clinical MRSA isolates with MICs in the 1.56–6.25 μg/ml range. The compound also had antiproliferative activity against human melanoma, hepatocellular carcinoma, and non-malignant lung fibroblast cell lines, with IC50 values of 15.5, 27, and 32 μg/ml, respectively. Inhibition of bacterial biofilm formation was observed, but no eradication of established biofilm could be detected. No antifungal activity was observed against Candida albicans. During the isolation of 1, the compound was observed to convert into a structural isomer, 2, under acidic conditions. As 1 and 2 have high structural similarity, NMR data acquired for 2 were used to aid in the structure elucidation of 1. To the best of our knowledge, lulworthinone (1) represents the first new bioactive secondary metabolite isolated from the marine fungal order Lulworthiales.


Sign in / Sign up

Export Citation Format

Share Document