scholarly journals Treatment of Wastewater Using Seaweed: A Review

Author(s):  
Nithiya Arumugam ◽  
Shreeshivadasan Chelliapan ◽  
Hesam Kamyab ◽  
Sathiabama Thirugnana ◽  
Norazli Othman ◽  
...  

Inadequately treated or untreated wastewater greatly contribute to the release of unwanted toxic contaminants into water bodies. Some of these contaminants are persistent and bioaccumulative, becoming a great concern as they are released into the environment. Despite the abundance of wastewater treatment technologies, the adsorption method overall has proven to be an excellent way to treat wastewater from multiple industry sources. Because of its significant benefits, i.e., easy availability, handling, and higher efficiency with a low cost relative to other treatments, adsorption is opted as the best method to be used. However, biosorption using naturally found seaweeds has been proven to have promising results in removing pollutants, such as dyes from textile, paper, and the printing industry, nitrogen, and phosphorous and phenolic compounds, as well as heavy metals from various sources. Due to its ecofriendly nature together with the availability and inexpensiveness of raw materials, biosorption via seaweed has become an alternative to the existing technologies in removing these pollutants from wastewater effectively. In this article, the use of low-cost adsorbent (seaweed) for the removal of pollutants from wastewater has been reviewed. An extensive table summarises the applicability of seaweed in treating wastewater. Literature reported that the majority of research used simulated wastewater and minor attention has been given to biosorption using seaweed in the treatment of real wastewater.

2021 ◽  
pp. 9-17
Author(s):  
M.A. Sirakanyan ◽  
S.Yu. Kotikyan

The imperfection of industrial wastewater treatment technologies has led to the fact that a huge amount of inorganic ecotoxicants of various salts of heavy metals gets into water bodies. The extraction of a valuable component from industrial solutions seems to be economically and environmentally justified for enterprises in Republic of Armenia. Therefore, one of the directions of greening the industrial technologies is the use of local wastewater treatment plants to remove the heavy metal ions when discharging wastewater into water bodies. Most often, for these purposes, the sorption method of purification is used using various sorbents based on a wide variety of mineral raw materials. The search for ion exchangers of high capacity, selectivity, and low cost is of great importance, since ion exchange has taken an important place among the main methods of wastewater treatment. It is known from literature that the natural mineral glauconite, due to its structure and physicochemical properties, has the ability to extract heavy metals from water bodies. The presence of glauconite from the Garni deposit of RA predetermines its use, and the surface modification makes it possible to use it in water treatment. The results of kinetic studies of sorption of nickel and zinc ions under static conditions on a composite glauconite sorbent by constructing concentration isotherms are presented. The static capacities on the sorbent for zinc and nickel cations are determined. The kinetic dependence of the adsorption of zinc and nickel cations on the studied sorbent is investigated to determine the time of arrival of the equilibrium state. The limiting stage of the sorption process is determined by establishing the mechanism of interaction of the metal cation with the active center of the adsorbent. From the data obtained, it is found that the linear dependence of At/Amax indicates that the adsorption process at this stage is limited by gel external mass transfer, and the subsequent deviation - by the enhancement of the effect of external diffusion on the adsoption rate.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Prashant Agarwal ◽  
Ritika Gupta ◽  
Neeraj Agarwal

Rapid industrialization, economic development, and population overgrowth are the major reasons responsible for the release of organic and inorganic substances into the environment, further leading to environmental pollution and contamination of water. Nowadays, it is truism that wastewater treatment has raised concern worldwide and is the need of the hour. Therefore, it is necessary to conserve sustainable energy and adopt advanced wastewater treatment technologies. Microalgae culture is gaining tremendous attention as it provides a combined benefit of treating wastewater as a growth medium and algae biomass production which can be used for several livestock purposes. Microalgae are ubiquitous and extremely diverse microorganisms which can accumulate toxic contaminants and heavy metals from wastewater, making them superior contender to become a powerful nanofactory. Furthermore, they are versatile, relatively convenient, and easy to handle, along with various other advantages such as synthesis can be performed at low temperature with greater energy efficiency, less toxicity, and low risk to the environment. Comparing with other organisms such as fungi, yeast, and bacteria, microalgae are equally important organisms in the synthesis of nanoparticles; therefore, the study of algae-mediated biosynthesis of nanometals can be taken towards a newer branch and it has been termed as phytonanotechnology. Here, an overview of recent advances in wastewater treatment processes through an amalgamation of nanoparticles and microalgae is provided.


2018 ◽  
Vol 24 (1) ◽  
Author(s):  
CRISTIAN CIOBANU ◽  
GHEORGHE VOICU ◽  
MAGDALENA – LAURA TOMA ◽  
PAULA TUDOR

<p>With the dust arising from the clinker kilns and grill coolers (the major pollution sources in a cement plant), also heavy metals and their compounds (in the form of powders and vaporous), originating from fuels and raw materials, are pumped into the air. The paper presents some aspects regarding the monitoring of heavy metals contained in the combustion gases from a Romanian cement factory. The fuels used in the incinerator varied from coal/petroleum coke, refuse oils (from waste oils and their emulsions, up to sludge, paraffin, tars, contaminated soil), rubber (including whole used tires), plastic, paper, leather, textiles, wood (including sawdust), as such or impregnated/contaminated with various substances from industrial sources or sorted household wastes, sludge (previously dried) from wastewater treatment plants. In addition, the list of over 100 types of waste that can be co-processed can be found in integrated authorizations of cement plants. However, the level of heavy metals in the combustion gases was in allowed limits.</p>


Author(s):  
Victor Odhiambo Shikuku ◽  
Wilfrida N. Nyairo

The search for efficient and sustainable wastewater treatment technologies is a subject of continuing research. This is due to the emergence of new classes of water contaminants that are recalcitrant to the conventional wastewater treatment technologies and the stringent allowable limits for contaminant levels set by environmental management authorities. The chapter discusses the developments in synthesis methods and application of polymer-metal oxides as emerging facile materials for wastewater treatment. The varying uses of polymer-metal oxides for different processes in water treatment under varying operational conditions and their performance for different pollutants are critically analyzed. Their strengths and inherent limitations are also highlighted. The chapter demonstrates that polymer-metal oxides are facile low-cost and efficient materials and can be integrated in wastewater and drinking water treatment systems.


Author(s):  
Tehseen Yaseen ◽  
Anum Yaseen

Nanotechnology is the area of nano science that shows great potential to establish a new process for wastewater treatment. It has been applied on a nanometer scale level. Currently, limited water resources and real treatment of wastewater is a chief requirement for the growing economy. It is in great demand to introduce the progressive wastewater treatment technologies. Therefore, the modern innovative processes in nanomaterial sciences have been appealing the target of scientists. The chapter addresses the developments in nanotechnology with respect to wastewater treatment, especially the removal of heavy metals and to the environmental applications. It will discuss the application of different classes of nanomaterials for wastewater treatment in removal of heavy metals and its possible effects to the environment. Therefore, the scope is to offer an overview of how nanomaterials are causing concerns related to heavy metal removal for water and in the surrounding environment.


Author(s):  
Andreea BONDAREV

The pollution of industrial wastewater with heavy metals and dyes is a highly important environmental problem, because of the propagation of the pollution and because of its unfavourable consequences. Sustainable wastewater treatment is one of the foremost challenges of this century. Various waste materials characterized by lignocellulose composition are low cost, non-conventional adsorbent for biosorptive removal of heavy metal ions from aqueous solutions. Recent studies point to the potential of use of low-cost materials (zeolites, carrot residue and green tea waste) as effective sorbents for the removal of Cd2+ from aqueous solution. The use of bentonite to the treatment of wastewater containing reactive dyes in aqueous solutions requires the modification of the hydrophilic surface by inorganic cations with organic cations exchange. The use of bentonite as an inexpensive sorbent for the removal of Remazol Brilliant Blue R (RBBR) from synthetic aqueous solutions has been also presented in recent studies. The influence of some parameters such as: pH, initial dye concentration, sorbent dose on sorption kinetics for dye removal has been reviewed in this paper.


Author(s):  
Yigezu Mekonnen Bayisa ◽  
Tafere Aga Bullo ◽  
Mohammed Seid Bultum

In recent decades, research concerning and knowledge about the external benefits of renewable raw materials have intensified the efforts for investigating the major sources, causes, and effects of wastewater from solid waste and industries or households. In this study bio-matter and low-cost photocatalyst was prepared for photodegradation on the removal of methylene blue from wastewater treatment, and characterized by Fourier-transform infrared (FTIR) spectroscopy, UV-spectrometer, and X-ray diffractometer (XRD). The effects of initial concentration of methylene blue, amount of dopant, and degradation time were investigated on the percentage degradation of methylene blue using the calcinated eggshell doped titanium dioxide nanoparticle catalysts. At sufficient contact time and low initial concentration, the increment in dopant dose from 0.5 to 2.5 g/l results in an increment of methylene blue degradation efficiency, from 52.5 % to 95.8%. It was shown that a calcinating eggshell doped titanium dioxide photocatalyst method for wastewater treatment is a promising option for the degradation of methylene blue from industrial wastewater under the stated condition.


2017 ◽  
Vol 23 (1) ◽  
pp. 20-26
Author(s):  
CRISTIAN CIOBANU ◽  
GHEORGHE VOICU ◽  
MAGDALENA – LAURA TOMA ◽  
PAULA TUDOR

With the dust arising from the clinker kilns and grill coolers (the major pollution sources in a cement plant), also heavy metals and their compounds (in the form of powders and vaporous), originating from fuels and raw materials, are pumped into the air. The paper presents some aspects regarding the monitoring of heavy metals contained in the combustion gases from a Romanian cement factory. The fuels used in the incinerator varied from coal/petroleum coke, refuse oils (from waste oils and their emulsions, up to sludge, paraffin, tars, contaminated soil), rubber (including whole used tires), plastic, paper, leather, textiles, wood (including sawdust), as such or impregnated/contaminated with various substances from industrial sources or sorted household wastes, sludge (previously dried) from wastewater treatment plants. In addition, the list of over 100 types of waste that can be co-processed can be found in integrated authorizations of cement plants. However, the level of heavy metals in the combustion gases was in allowed limits.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
A. I. M. Ismail ◽  
O. I. El-Shafey ◽  
M. H. A. Amr ◽  
M. S. El-Maghraby

Wastewater treatment of some heavy metals was carried out by synthetic zeolite P1, which was prepared by alkaline hydrothermal treatment of the pumice. Both of the pumice raw materials and synthetic zeolite were investigated for their chemical phase composition, physical properties, and microstructure. The adsorption behavior of Na-zeolite P1 with respect to Co+2, Cu+2, Fe+2, and Cd+2 has been studied to be applied in the industrial wastewater treatment. Metal removal was investigated using synthetic solutions at different ions concentrations, time, and Na-P1 zeolite doses as well as constant temperature and pH. It is concluded that the optimum conditions for synthesis of highly active Na-P1 zeolite from natural pumice raw material are one molar NaOH concentration, temperature at 80°C, and one week as a crystallization time. In addition to the effect of time and zeolite dose as well as the ion concentration of the reaction efficiency for metals removals are recorded.


Sign in / Sign up

Export Citation Format

Share Document