scholarly journals Effect of Specific Retinoic Acid Receptor Agonists on Noise-Induced Hearing Loss

Author(s):  
Sang Hyun Kwak ◽  
Gi-Sung Nam ◽  
Seong Hoon Bae ◽  
Jinsei Jung

Noise is one of the most common causes of hearing loss in industrial countries. There are many studies about chemical agents to prevent noise-induced hearing loss (NIHL). However, there is no commercially available drug yet. Retinoic acid is an active metabolite of Vitamin A; it has an anti-apoptic role in NIHL. This study aims to verify the differences among selective agonists of retinoic acid receptors (RARs) in NIHL. All-trans retinoic acid (ATRA), AM80 (selective retinoic acid receptor α agonist), AC261066 (Selective retinoic acid receptor β1 agonist), and CD1530 (Selective retinoic acid λ agonist) were injected to 6–7 weeks old CJ5BL/6 mice before noise (110 dB for 3 h) exposure. In the auditory brainstem response test pre-, post 1, 3, and 7 days after noise exposure, not only ATRA but all kinds of selective RAR agonists showed protective effects in hearing threshold and wave I amplitude. Though there was no significant difference in the level of protective effects between agonists, α agonist showed the most prominent effect in preserving hearing function as well as outer hair cells after noise exposure. In conclusion, selective agonists of RAR demonstrate comparable protective effects against NIHL to retinoic acid. Given that these selective RAR agonists have less side effects than retinoic acid, they may be promising potential drugs against NIHL.

Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 443
Author(s):  
Hyunjun Woo ◽  
Min-Kyung Kim ◽  
Sohyeon Park ◽  
Seung-Hee Han ◽  
Hyeon-Cheol Shin ◽  
...  

One of the well-known causes of hearing loss is noise. Approximately 31.1% of Americans between the ages of 20 and 69 years (61.1 million people) have high-frequency hearing loss associated with noise exposure. In addition, recurrent noise exposure can accelerate age-related hearing loss. Phlorofucofuroeckol A (PFF-A) and dieckol, polyphenols extracted from the brown alga Ecklonia cava, are potent antioxidant agents. In this study, we investigated the effect of PFF-A and dieckol on the consequences of noise exposure in mice. In 1,1-diphenyl-2-picrylhydrazyl assay, dieckol and PFF-A both showed significant radical-scavenging activity. The mice were exposed to 115 dB SPL of noise one single time for 2 h. Auditory brainstem response(ABR) threshold shifts 4 h after 4 kHz noise exposure in mice that received dieckol were significantly lower than those in the saline with noise group. The high-PFF-A group showed a lower threshold shift at click and 16 kHz 1 day after noise exposure than the control group. The high-PFF-A group also showed higher hair cell survival than in the control at 3 days after exposure in the apical turn. These results suggest that noise-induced hair cell damage in cochlear and the ABR threshold shift can be alleviated by dieckol and PFF-A in the mouse. Derivatives of these compounds may be applied to individuals who are inevitably exposed to noise, contributing to the prevention of noise-induced hearing loss with a low probability of adverse effects.


Trauma ◽  
2018 ◽  
Vol 21 (2) ◽  
pp. 121-127 ◽  
Author(s):  
SJ Muzaffar ◽  
L Orr ◽  
RF Rickard ◽  
CJ Coulson ◽  
RM Irving

Introduction Whilst hearing injuries are not life threatening they may have a profound impact on the victim’s ability to understand and interact with the world around them. Noise-induced hearing loss is a common occupational injury and hearing impairment as a consequence of noise and blast exposure remains the most common injury in both war and peace for military personnel. Health and Safety legislation has made an impact and in the future innovative approaches to mitigate against acoustic injury sustained in the work place will be fundamental. For the Armed Forces, noise exposure during conflict is unpredictable. Furthermore, recent events in the UK and elsewhere have highlighted the potential civilian impact of blast injuries on hearing in the acute setting. No well-established protocol for the management of acute, blast-induced hearing injury currently exists. Methods Narrative review is supported by electronic literature searches of PubMed, Embase and the Cochrane Library. Synthesis of published literature and production of flow charts for the acute setting are part of the Emergency Preparedness, Resilience and Response programme. Results Whilst there is a lack of high-quality randomised controlled trials, there are a number of studies that may inform our choice of acute management. Animal studies of acute acoustic trauma have shown the potential protective effects of corticosteroids. Human data may be extrapolated from sudden onset sensorineural hearing loss where again there is evidence for the use of corticosteroids. Less certainty exists around the use of other treatments including antioxidants. Intratympanic administration of corticosteroids may be superior to oral administration, particularly in the salvage setting. No evidence exists specifically pertaining to the paediatric population. Conclusion Prompt identification of any hearing deficit followed by administration of glucocorticoids either orally or via intratympanic preparations is the mainstay of management. Further research is needed to identify the optimum acute management.


2009 ◽  
Vol 129 (3) ◽  
pp. 233-238 ◽  
Author(s):  
Hyun Joon Shim ◽  
Hun Hee Kang ◽  
Joong Ho Ahn ◽  
Jong Woo Chung

Blood ◽  
1992 ◽  
Vol 79 (12) ◽  
pp. 3331-3336 ◽  
Author(s):  
D Diverio ◽  
F Lo Coco ◽  
F D'Adamo ◽  
A Biondi ◽  
M Fagioli ◽  
...  

Seventy patients with acute promyelocytic leukemia (APL) were characterized at the DNA level using genomic retinoic acid receptor- alpha (RAR-alpha) probes on Southern blot experiments. Sixty-two cases were defined as M3 according to the French-American-British (FAB) criteria, and eight had a diagnosis of microgranular or variant (M3v) APL. The use of two restriction enzymes and three probes exploring the second intron of the RAR-alpha gene allowed us to detect specific abnormal DNA fragments in every case, with clustering of rearrangements within the 20-kb intronic region between RAR-alpha exons II and III. A more detailed mapping of APL breakpoints was performed in 52 cases in which three EcoRI subregions of the RAR-alpha second intron were analyzed with corresponding probes. Comparison of clinical and hematological features in the three subgroups of patients with distinct RAR-alpha breakpoints did not show significant differences regarding age, peripheral blood (PB) counts, presence of coagulopathy, or FAB classification (M3 v M3v). Interestingly, a significant difference was observed in the M/F ratio of the three subgroups, with a higher incidence of rearrangements at the 5′ end of the RAR-alpha second intron in female patients, and more frequent 3′ breakpoints in males. The results of this study indicate that a unique genomic alteration consistently occurs on the 17q- derivative of the APL specific t(15;17) aberration. Moreover, the clinical relevance of RAR-alpha gene analysis both at diagnosis and in follow-up studies is further emphasized.


2019 ◽  
Vol 47 (8) ◽  
pp. 3874-3885 ◽  
Author(s):  
Yanru Wang ◽  
Yan Qu ◽  
Xuzhen Chen ◽  
Pu Zhang ◽  
Dan Su ◽  
...  

Objective To study the effects of D-methionine in a mouse model of noise-induced hearing loss (NIHL). Methods We investigated changes in auditory function and microscopic cochlear structure in a mouse model of NIHL, and carried out 4-hydroxynonenal (4-HNE) immunostaining and terminal deoxynucleotidyl transferase dUTP nick-end labeling, and examined expression levels of connexins 26 and 30 by western blot. Results The auditory brainstem response threshold was significantly increased by noise exposure. Noise exposure also damaged the inner and particularly the outer hair cells in the cochlear basement membrane, while histochemistry demonstrated only scattered loss of hair cells in the basement membrane in mice treated with D-methionine before or after noise exposure. D-methionine inhibited apoptosis in the cochlear basement membrane, stria vascularis, and spiral ligament. 4-HNE expression in the basement membrane, stria vascularis, and spiral collateral ligament was increased by noise exposure, but this increase was attenuated by D-methionine. Connexin 26 and connexin 30 expression levels were reduced by noise exposure, and this effect was similarly attenuated by D-methionine administered either before or after noise exposure. Conclusion D-methionine administered before or after noise exposure could rescue NIHL by protecting cochlear morphology, inhibiting apoptosis, and maintaining connexin 26 and 30 expression.


Blood ◽  
1992 ◽  
Vol 79 (12) ◽  
pp. 3331-3336 ◽  
Author(s):  
D Diverio ◽  
F Lo Coco ◽  
F D'Adamo ◽  
A Biondi ◽  
M Fagioli ◽  
...  

Abstract Seventy patients with acute promyelocytic leukemia (APL) were characterized at the DNA level using genomic retinoic acid receptor- alpha (RAR-alpha) probes on Southern blot experiments. Sixty-two cases were defined as M3 according to the French-American-British (FAB) criteria, and eight had a diagnosis of microgranular or variant (M3v) APL. The use of two restriction enzymes and three probes exploring the second intron of the RAR-alpha gene allowed us to detect specific abnormal DNA fragments in every case, with clustering of rearrangements within the 20-kb intronic region between RAR-alpha exons II and III. A more detailed mapping of APL breakpoints was performed in 52 cases in which three EcoRI subregions of the RAR-alpha second intron were analyzed with corresponding probes. Comparison of clinical and hematological features in the three subgroups of patients with distinct RAR-alpha breakpoints did not show significant differences regarding age, peripheral blood (PB) counts, presence of coagulopathy, or FAB classification (M3 v M3v). Interestingly, a significant difference was observed in the M/F ratio of the three subgroups, with a higher incidence of rearrangements at the 5′ end of the RAR-alpha second intron in female patients, and more frequent 3′ breakpoints in males. The results of this study indicate that a unique genomic alteration consistently occurs on the 17q- derivative of the APL specific t(15;17) aberration. Moreover, the clinical relevance of RAR-alpha gene analysis both at diagnosis and in follow-up studies is further emphasized.


2017 ◽  
Author(s):  
Rebecca Susan Dewey ◽  
Deborah A Hall ◽  
Hannah Guest ◽  
Garreth Prendergast ◽  
Christopher J Plack ◽  
...  

BACKGROUND Rodent studies indicate that noise exposure can cause permanent damage to synapses between inner hair cells and high-threshold auditory nerve fibers, without permanently altering threshold sensitivity. These demonstrations of what is commonly known as hidden hearing loss have been confirmed in several rodent species, but the implications for human hearing are unclear. OBJECTIVE Our Medical Research Council–funded program aims to address this unanswered question, by investigating functional consequences of the damage to the human peripheral and central auditory nervous system that results from cumulative lifetime noise exposure. Behavioral and neuroimaging techniques are being used in a series of parallel studies aimed at detecting hidden hearing loss in humans. The planned neuroimaging study aims to (1) identify central auditory biomarkers associated with hidden hearing loss; (2) investigate whether there are any additive contributions from tinnitus or diminished sound tolerance, which are often comorbid with hearing problems; and (3) explore the relation between subcortical functional magnetic resonance imaging (fMRI) measures and the auditory brainstem response (ABR). METHODS Individuals aged 25 to 40 years with pure tone hearing thresholds ≤20 dB hearing level over the range 500 Hz to 8 kHz and no contraindications for MRI or signs of ear disease will be recruited into the study. Lifetime noise exposure will be estimated using an in-depth structured interview. Auditory responses throughout the central auditory system will be recorded using ABR and fMRI. Analyses will focus predominantly on correlations between lifetime noise exposure and auditory response characteristics. RESULTS This paper reports the study protocol. The funding was awarded in July 2013. Enrollment for the study described in this protocol commenced in February 2017 and was completed in December 2017. Results are expected in 2018. CONCLUSIONS This challenging and comprehensive study will have the potential to impact diagnostic procedures for hidden hearing loss, enabling early identification of noise-induced auditory damage via the detection of changes in central auditory processing. Consequently, this will generate the opportunity to give personalized advice regarding provision of ear defense and monitoring of further damage, thus reducing the incidence of noise-induced hearing loss.


2000 ◽  
Vol 83 (6) ◽  
pp. 665-671 ◽  
Author(s):  
S. Bonilla ◽  
A. Redonnet ◽  
C. Noël-Suberville ◽  
V. Pallet ◽  
H. Garcin ◽  
...  

The purpose of this study was to differentiate between the effects of the amount and the type of dietary lipids on the expression of the retinoic acid receptor (RAR), but also the peroxisome proliferator-activated receptor (PPAR) and the receptor of the 9-cis retinoic acid (retinoid X receptor (RXR)) in rat liver. Six groups of eight rats (5-weeks old) were fed during 4 weeks on the following diets: control 50 g vegetable oil/kg, high-fat diet 250 g vegetable oil/kg. These oils were either coconut oil (rich in saturated fatty acids) or olive oil (rich in monounsaturated fatty acids) or safflower oil (rich in polyunsaturated fatty acids, mainly as n-6). The three high-fat diets induced a significant decrease of the maximal binding capacity of RAR and of the abundance of RARβ mRNA. Simultaneously, an increased expression of PPARα mRNA was observed while no significant difference on abundance of RXRα mRNA was observed. The mechanisms involved are probably multiple, but one hypothesis is that a modification of the equilibrium between the nuclear receptors, resulting from an increased expression of PPAR, induces a decreased expression of RAR in rat liver.


2020 ◽  
Vol 21 (20) ◽  
pp. 7535
Author(s):  
Chao-Hui Yang ◽  
Chung-Feng Hwang ◽  
Jiin-Haur Chuang ◽  
Wei-Shiung Lian ◽  
Feng-Sheng Wang ◽  
...  

Noise-induced hearing loss is one of the major causes of acquired sensorineural hearing loss in modern society. While people with excessive exposure to noise are frequently the population with a lifestyle of irregular circadian rhythms, the effects of circadian dysregulation on the auditory system are still little known. Here, we disturbed the circadian clock in the cochlea of male CBA/CaJ mice by constant light (LL) or constant dark. LL significantly repressed circadian rhythmicity of circadian clock genes Per1, Per2, Rev-erbα, Bmal1, and Clock in the cochlea, whereas the auditory brainstem response thresholds were unaffected. After exposure to low-intensity (92 dB) noise, mice under LL condition initially showed similar temporary threshold shifts to mice under normal light–dark cycle, and mice under both conditions returned to normal thresholds after 3 weeks. However, LL augmented high-intensity (106 dB) noise-induced permanent threshold shifts, particularly at 32 kHz. The loss of outer hair cells (OHCs) and the reduction of synaptic ribbons were also higher in mice under LL after noise exposure. Additionally, LL enhanced high-intensity noise-induced 4-hydroxynonenal in the OHCs. Our findings convey new insight into the deleterious effect of an irregular biological clock on the auditory system.


Sign in / Sign up

Export Citation Format

Share Document