Mitigating noise-induced hearing loss after blast injury

Trauma ◽  
2018 ◽  
Vol 21 (2) ◽  
pp. 121-127 ◽  
Author(s):  
SJ Muzaffar ◽  
L Orr ◽  
RF Rickard ◽  
CJ Coulson ◽  
RM Irving

Introduction Whilst hearing injuries are not life threatening they may have a profound impact on the victim’s ability to understand and interact with the world around them. Noise-induced hearing loss is a common occupational injury and hearing impairment as a consequence of noise and blast exposure remains the most common injury in both war and peace for military personnel. Health and Safety legislation has made an impact and in the future innovative approaches to mitigate against acoustic injury sustained in the work place will be fundamental. For the Armed Forces, noise exposure during conflict is unpredictable. Furthermore, recent events in the UK and elsewhere have highlighted the potential civilian impact of blast injuries on hearing in the acute setting. No well-established protocol for the management of acute, blast-induced hearing injury currently exists. Methods Narrative review is supported by electronic literature searches of PubMed, Embase and the Cochrane Library. Synthesis of published literature and production of flow charts for the acute setting are part of the Emergency Preparedness, Resilience and Response programme. Results Whilst there is a lack of high-quality randomised controlled trials, there are a number of studies that may inform our choice of acute management. Animal studies of acute acoustic trauma have shown the potential protective effects of corticosteroids. Human data may be extrapolated from sudden onset sensorineural hearing loss where again there is evidence for the use of corticosteroids. Less certainty exists around the use of other treatments including antioxidants. Intratympanic administration of corticosteroids may be superior to oral administration, particularly in the salvage setting. No evidence exists specifically pertaining to the paediatric population. Conclusion Prompt identification of any hearing deficit followed by administration of glucocorticoids either orally or via intratympanic preparations is the mainstay of management. Further research is needed to identify the optimum acute management.

2014 ◽  
Vol 9 (1) ◽  
pp. 19-24
Author(s):  
MR Alam ◽  
MA Wahab ◽  
MM Rahman ◽  
AKM Asaduzzaman ◽  
MAS Al-Azad ◽  
...  

Introduction: Noise Induced Hearing Loss (NIHL) is an occupational health hazard linked with noise exposure of more than 85 dB. Aircraft noise and other occupational noise exposure cause military aviators more susceptible to NIHL than commercial jet pilots. Aim: To find out the prevalence of noise induced hearing loss among different military aircrew population with special emphasis on identifying the associated risk factors. Materials and Methods: This cross sectional study was conducted on Kuwait Air force pilots those who came for annual medical checkup from July 2010 to July 2012. Audiometry of all subjects was done by ENT specialist and necessary data were collected by structured questionnaires. All data were analyzed by SPSS (Statistical Package for the Social Sciences) version 17.0 Results: Out of 221 aircrew 32 (14.48%) developed NIHL. Hearing loss was mild to moderate and predominately at high frequencies. Most affected group was helicopter pilots. Pilots of more than 40 years of age and those who had more than 1000 flying hours had mean hearing threshold more than other groups. The right ear was affected in majority of cases than left ear. Conclusion: Noise exposure to aircrew is inevitable so hearing loss prevention strategies might play a pivotal role to save aircrew hearing. Active surveillance of hearing protection practices might have beneficiary effect. Steps can be taken for early detection of NIHL and hearing conservation program. DOI: http://dx.doi.org/10.3329/jafmc.v9i1.18721 Journal of Armed Forces Medical College Bangladesh Vol.9(1) 2013: 19-24


Author(s):  
Sang Hyun Kwak ◽  
Gi-Sung Nam ◽  
Seong Hoon Bae ◽  
Jinsei Jung

Noise is one of the most common causes of hearing loss in industrial countries. There are many studies about chemical agents to prevent noise-induced hearing loss (NIHL). However, there is no commercially available drug yet. Retinoic acid is an active metabolite of Vitamin A; it has an anti-apoptic role in NIHL. This study aims to verify the differences among selective agonists of retinoic acid receptors (RARs) in NIHL. All-trans retinoic acid (ATRA), AM80 (selective retinoic acid receptor α agonist), AC261066 (Selective retinoic acid receptor β1 agonist), and CD1530 (Selective retinoic acid λ agonist) were injected to 6–7 weeks old CJ5BL/6 mice before noise (110 dB for 3 h) exposure. In the auditory brainstem response test pre-, post 1, 3, and 7 days after noise exposure, not only ATRA but all kinds of selective RAR agonists showed protective effects in hearing threshold and wave I amplitude. Though there was no significant difference in the level of protective effects between agonists, α agonist showed the most prominent effect in preserving hearing function as well as outer hair cells after noise exposure. In conclusion, selective agonists of RAR demonstrate comparable protective effects against NIHL to retinoic acid. Given that these selective RAR agonists have less side effects than retinoic acid, they may be promising potential drugs against NIHL.


2020 ◽  
Vol 21 (12) ◽  
pp. 1216-1224
Author(s):  
Fatemeh Forouzanfar ◽  
Samira Asgharzade

Noise exposure (NE) has been recognized as one of the causes of sensorineural hearing loss (SNHL), which can bring about irreversible damage to sensory hair cells in the cochlea, through the launch of oxidative stress pathways and inflammation. Accordingly, determining the molecular mechanism involved in regulating hair cell apoptosis via NE is essential to prevent hair cell damage. However, the role of microRNAs (miRNAs) in the degeneration of sensory cells of the cochlea during NE has not been so far uncovered. Thus, the main purpose of this study was to demonstrate the regulatory role of miRNAs in the oxidative stress pathway and inflammation induced by NE. In this respect, articles related to noise-induced hearing loss (NIHL), oxidative stress, inflammation, and miRNA from various databases of Directory of Open Access Journals (DOAJ), Google Scholar, PubMed; Library, Information Science & Technology Abstracts (LISTA), and Web of Science were searched and retrieved. The findings revealed that several studies had suggested that up-regulation of miR-1229-5p, miR-451a, 185-5p, 186 and down-regulation of miRNA-96/182/183 and miR-30b were involved in oxidative stress and inflammation which could be used as biomarkers for NIHL. There was also a close relationship between NIHL and miRNAs, but further research is required to prove a causal association between miRNA alterations and NE, and also to determine miRNAs as biomarkers indicating responses to NE.


Author(s):  
David C. Byrne ◽  
Thais C. Morata

Exposure to industrial noise and the resulting effect of occupational hearing loss is a common problem in nearly all industries. This chapter describes industrial noise exposure, its assessment, and hearing disorders that result from overexposure to noise. Beginning with the properties of sound, noise-induced hearing loss and other effects of noise exposure are discussed. The impact of hearing disorders and the influence of other factors on hearing loss are described. Typically, noise-induced hearing loss develops slowly, and usually goes unnoticed until a significant impairment has occurred. Fortunately, occupational hearing loss is nearly always preventable. Therefore, this chapter gives particular attention to recommendations for measures to prevent occupational hearing loss such as engineering noise controls and hearing protection devices.


Author(s):  
Feifan Chen ◽  
Zuwei Cao ◽  
Emad M. Grais ◽  
Fei Zhao

Abstract Purpose Noise-induced hearing loss (NIHL) is a global issue that impacts people’s life and health. The current review aims to clarify the contributions and limitations of applying machine learning (ML) to predict NIHL by analyzing the performance of different ML techniques and the procedure of model construction. Methods The authors searched PubMed, EMBASE and Scopus on November 26, 2020. Results Eight studies were recruited in the current review following defined inclusion and exclusion criteria. Sample size in the selected studies ranged between 150 and 10,567. The most popular models were artificial neural networks (n = 4), random forests (n = 3) and support vector machines (n = 3). Features mostly correlated with NIHL and used in the models were: age (n = 6), duration of noise exposure (n = 5) and noise exposure level (n = 4). Five included studies used either split-sample validation (n = 3) or ten-fold cross-validation (n = 2). Assessment of accuracy ranged in value from 75.3% to 99% with a low prediction error/root-mean-square error in 3 studies. Only 2 studies measured discrimination risk using the receiver operating characteristic (ROC) curve and/or the area under ROC curve. Conclusion In spite of high accuracy and low prediction error of machine learning models, some improvement can be expected from larger sample sizes, multiple algorithm use, completed reports of model construction and the sufficient evaluation of calibration and discrimination risk.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 443
Author(s):  
Hyunjun Woo ◽  
Min-Kyung Kim ◽  
Sohyeon Park ◽  
Seung-Hee Han ◽  
Hyeon-Cheol Shin ◽  
...  

One of the well-known causes of hearing loss is noise. Approximately 31.1% of Americans between the ages of 20 and 69 years (61.1 million people) have high-frequency hearing loss associated with noise exposure. In addition, recurrent noise exposure can accelerate age-related hearing loss. Phlorofucofuroeckol A (PFF-A) and dieckol, polyphenols extracted from the brown alga Ecklonia cava, are potent antioxidant agents. In this study, we investigated the effect of PFF-A and dieckol on the consequences of noise exposure in mice. In 1,1-diphenyl-2-picrylhydrazyl assay, dieckol and PFF-A both showed significant radical-scavenging activity. The mice were exposed to 115 dB SPL of noise one single time for 2 h. Auditory brainstem response(ABR) threshold shifts 4 h after 4 kHz noise exposure in mice that received dieckol were significantly lower than those in the saline with noise group. The high-PFF-A group showed a lower threshold shift at click and 16 kHz 1 day after noise exposure than the control group. The high-PFF-A group also showed higher hair cell survival than in the control at 3 days after exposure in the apical turn. These results suggest that noise-induced hair cell damage in cochlear and the ABR threshold shift can be alleviated by dieckol and PFF-A in the mouse. Derivatives of these compounds may be applied to individuals who are inevitably exposed to noise, contributing to the prevention of noise-induced hearing loss with a low probability of adverse effects.


2017 ◽  
Vol 26 (3S) ◽  
pp. 352-368 ◽  
Author(s):  
Vincent Nadon ◽  
Annelies Bockstael ◽  
Dick Botteldooren ◽  
Jérémie Voix

Purpose In spite of all the efforts to implement workplace hearing conservation programs, noise-induced hearing loss remains the leading cause of disability for North American workers. Nonetheless, an individual's susceptibility to noise-induced hearing loss can be estimated by monitoring changes in hearing status in relation to the level of ambient noise exposure. The purpose of this study was to validate an approach that could improve workplace hearing conservation practices. The approach was developed using a portable and robust system designed for noisy environments and consisted of taking continuous measurements with high temporal resolution of the health status of the inner ear using otoacoustic emissions (OAEs). Method A pilot study was conducted in a laboratory, exposing human subjects to industrial noise recordings at realistic levels. In parallel, OAEs were measured periodically using the designed OAE system as well as with a commercially available OAE system, used as a reference. Results Variations in OAE levels were analyzed and discussed along with the limitations of the reference and designed systems. Conclusions This study demonstrates that the monitoring of an individual's OAEs could be useful in monitoring temporary changes in hearing status induced by exposure to ambient noise and could be considered as a new tool for effective hearing conservation programs in the workplace.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Holly J. Beaulac ◽  
Felicia Gilels ◽  
Jingyuan Zhang ◽  
Sarah Jeoung ◽  
Patricia M. White

AbstractThe prevalence of noise-induced hearing loss (NIHL) continues to increase, with limited therapies available for individuals with cochlear damage. We have previously established that the transcription factor FOXO3 is necessary to preserve outer hair cells (OHCs) and hearing thresholds up to two weeks following mild noise exposure in mice. The mechanisms by which FOXO3 preserves cochlear cells and function are unknown. In this study, we analyzed the immediate effects of mild noise exposure on wild-type, Foxo3 heterozygous (Foxo3+/−), and Foxo3 knock-out (Foxo3−/−) mice to better understand FOXO3’s role(s) in the mammalian cochlea. We used confocal and multiphoton microscopy to examine well-characterized components of noise-induced damage including calcium regulators, oxidative stress, necrosis, and caspase-dependent and caspase-independent apoptosis. Lower immunoreactivity of the calcium buffer Oncomodulin in Foxo3−/− OHCs correlated with cell loss beginning 4 h post-noise exposure. Using immunohistochemistry, we identified parthanatos as the cell death pathway for OHCs. Oxidative stress response pathways were not significantly altered in FOXO3’s absence. We used RNA sequencing to identify and RT-qPCR to confirm differentially expressed genes. We further investigated a gene downregulated in the unexposed Foxo3−/− mice that may contribute to OHC noise susceptibility. Glycerophosphodiester phosphodiesterase domain containing 3 (GDPD3), a possible endogenous source of lysophosphatidic acid (LPA), has not previously been described in the cochlea. As LPA reduces OHC loss after severe noise exposure, we treated noise-exposed Foxo3−/− mice with exogenous LPA. LPA treatment delayed immediate damage to OHCs but was insufficient to ultimately prevent their death or prevent hearing loss. These results suggest that FOXO3 acts prior to acoustic insult to maintain cochlear resilience, possibly through sustaining endogenous LPA levels.


2021 ◽  
Vol 100 (9) ◽  
pp. 947-952
Author(s):  
Elena A. Preobrazhenskaia ◽  
Anna V. Sukhova ◽  
Elena N. Kriuchkova

Introduction. The high incidence of noise-induced hearing loss (NIHL) makes it possible to attribute the problem of prevention and prediction of the risk of NIHL to the number of socially significant ones. The aim of the study is to conduct a comparative assessment of the potential risk of hearing loss caused by noise according to GOST R ISO 1999-2017, and the actual risk of NIHL in workers of “noise” industries according to epidemiological research. Materials and methods. The calculation of the potential risk of hearing loss according to GOST R ISO 1999-2017 included assessing age, noise and total hearing loss at noise exposure with 85, 90, 95 and 100 dBA. The actual risk of NIHL was evaluated on survey data of 600 miners and 600 workers of processing plants. Results. The calculation of the probable risk according to GOST R ISO 1999-2017 and the assessment of the actual risk according to epidemiological studies showed that the risk of NIHL depends on both noise exposure and age. As the levels of noise affecting an employee increase, the risk of an NIHL becomes more determined by the effect of noise. At noise levels 85, 90 and 95 dBA, the probable risk calculated under GOST R ISO 1999-2017 coincides with the actual risk established according to epidemiological studies. At the same time, for miners exposed to high-intensity noise 100 dBА, the real risk was not as high as could be assumed from the calculated data. Conclusion. The results obtained allow stating that the GOST ISO 1999-2017 standard with a high degree of potential risk allows predicting the group risk of hearing loss due to noise exposure, to quantify the degree of risk and can be used for the formation of risk groups for NIHL and the development of programs for the preservation of hearing.


1985 ◽  
Vol 121 (4) ◽  
pp. 501-514 ◽  
Author(s):  
ELELYN TALBOTT ◽  
JAMES HELMKAMP ◽  
KARAN MATHEWS ◽  
LEWIS KULLER ◽  
ERIC COTTINGTON ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document