scholarly journals Characterization and Arsenic Adsorption Behaviors of Water Treatment Residuals from Waterworks for Iron and Manganese Removal

Author(s):  
Huiping Zeng ◽  
Tongda Qiao ◽  
Yunxin Zhao ◽  
Yaping Yu ◽  
Jie Zhang ◽  
...  

Water treatment residuals (WTRs), obtained from a groundwater treatment plant for biological iron and manganese removal, were investigated and used as adsorbents for arsenic removal. The surface morphology and structural features of the WTRs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Brunauner–Emmett–Teller analysis (BET). Laboratory experiments were also carried out to test the adsorption capability and adaptability of WTRs on both As (III) and As (V) removal from the water. The results showed that the WTRs were mainly amorphous and had a large specific surface area of 253.152 m2/g. The maximum adsorption capacities, evaluated using the Langmuir isotherm equation, were 36.53 mg/g and 40.37 mg/g for As (III) and As (V), respectively. The pseudo-second-order model fitted the kinetic data better, with R2 more than 0.99 for both As (III) and As (V). The removal of As (V) decreased with the increase in pH, especially when the pH was above 9, whereas for As (III), the removal effectiveness almost remained constant at both acidic and neutral pHs. H2PO4− and SiO32− could strongly inhibit arsenic adsorption onto the WTRs, and the effect of other ions was little.

2013 ◽  
Vol 663 ◽  
pp. 1064-1069 ◽  
Author(s):  
Chi Chuan Kan ◽  
Meng Wei Wan ◽  
Hui Ling Yang ◽  
Chih Chao Wu

In this study, quartz sand coated with water-treatment residuals was tested for its effectiveness as an arsenic adsorbent. The surface characteristics of the quartz sand before and after modification were analyzed. Different amounts of modified quartz sand were then tested for their adsorption capacity, using raw water with an arsenic concentration of 500 ppb. Analysis showed that the surface area and average pore diameter of the quartz sand had increased significantly after modification, as did the amounts of iron, manganese, and aluminum found as surface elements. Using both Freundlich and Langmuir isotherm models to measure the effectiveness of arsenic adsorption by the modified quartz sand, it was found that the latter model, for monolayer adsorption, was more appropriate.


2018 ◽  
Vol 13 (3) ◽  
pp. 461-468
Author(s):  
Tomáš Kučera ◽  
Veronika Hanušová

Abstract This paper presents the results of the first phase of research that evaluates options for the optimization of waste-water management during water treatment. The research was conducted in a specific treatment plant, with surface-water sources, to verify the option of recirculating part of the sludge-water back to the beginning of the technological line and mixing this with a portion of raw water. An evaluation of risk factors is necessary for such treatment, as they could render the recirculation of the backwashing water impossible. The motivation behind this research lies in the potential savings of operating costs, particularly the costs of pumping raw water from a watercourse. This research evaluated data regarding the quality of both raw and processed water, focusing on six indicators – turbidity, color, chemical oxygen demand, and concentrations of aluminum, iron and manganese. The evaluation established through these factors indicates that the plan for returning a certain volume of sludge-water back into the process is possible and should cause no problems regarding the quality of drinking water produced. Based on the results of the first phase of this research, it is possible to recirculate up to 6% of overall raw-water volume back into the process.


2016 ◽  
Vol 11 (4) ◽  
pp. 702-711 ◽  
Author(s):  
Collivignarelli Maria Cristina ◽  
Canato Matteo ◽  
Sorlini Sabrina ◽  
Crotti Barbara Marianna

Many water treatment plants (WTPs) were designed to remove ammonia, iron, and manganese simultaneously using biofilters. In some cases (especially in the Pianura Padana area, in Italy) such plants were designed without a specific treatment stage for arsenic removal because its concentration in the groundwater (i.e. 10 to 20 μg/L) was lower than the previous maximum contaminant level (MCL) of 50 μg-As/L; therefore, specific treatments for arsenic removal must be introduced or upgraded in WTPs. In this work, the results of a 19-month monitoring campaign are reported for a pilot granular ferric oxide (GFO) filter installed in an Italian WTP as a polishing stage. The aim was to investigate the performance of GFO with low arsenic concentrations. The results show that, if the groundwater arsenic concentration is close to the MCL, GFO treatment can be cost effective (approximately 80,000 bed volumes have been treated). It was confirmed that GFO can be effective for the removal of both As(III) and As(V) species.


2008 ◽  
Vol 58 (10) ◽  
pp. 2009-2015 ◽  
Author(s):  
U. Rott ◽  
H. Kauffmann

Arsenic in groundwater is a huge problem in numerous regions of the world. Many people are exposed to high arsenic concentrations and consequently risk getting ill or even die as a result of arsenic poisoning. There are several efficient technologies for the removal of arsenic but often these methods have disadvantages, e.g. high costs for installation and/or operation, the need for chemicals or the production of arsenic contaminated filter sludge. These disadvantages can make the application difficult, especially in poor regions. Under suitable ancillary conditions the subterranean (in-situ) treatment, which is often used for iron and manganese removal from groundwater, can also be applied for the removal of arsenic and can be a cost-effective treatment technology. A field trial was carried out with a low-cost in-situ treatment plant in West Bengal/India which is described in this paper, in order to investigate whether this treatment technology is also applicable under the boundary conditions there. As for the in-situ treatment technology besides oxygen no additives are required and no arsenic contaminated filter sludge is produced this technology could be a suitable method for arsenic removal especially in poor regions.


Author(s):  
Huiping Zeng ◽  
Can Yin ◽  
Jie Zhang ◽  
Dong Li

In recent years, biological purification technology has been widely developed in the process of iron and manganese removal from groundwater. The cultivation and maturation of the biological filter layer are key for biological iron and manganese removal processes. The time needed for maturation varies significantly with the water quality, filter and filter media conditions and operation parameters; sometimes it takes only one or two months, sometime more than half a year. In this paper, the feasibility of adopting an intermittent operation for the cultivation of biofilter was investigated with productive filters in a groundwater treatment plant, and the comparative test of the filter column was conducted. The results showed that the intermittent operation had little effect on the cultivation of the biofilter because dissolved oxygen would be gradually exhausted during the filter-suspension process, making the filter layer anaerobic, thus possibly inhibiting the growth and reproduction of IMOB (Iron and Manganese Oxidizing Bacteria). At the same time, the test shows that when the mature biological filter needs the suspension operation, the emptying method should be considered to avoid the destruction of the biological layer.


2017 ◽  
Vol 76 (9) ◽  
pp. 2380-2388 ◽  
Author(s):  
Jian-Long Hu ◽  
Xiao-Song Yang ◽  
Ting Liu ◽  
Li-Nan Shao ◽  
Wang Zhang

Abstract Polymer-supported hydrated iron(III) oxide (PHIO) was successfully applied as adsorbent for arsenic removal in a wastewater treatment plant in Nandan, China. The practical PHIO adsorbent samples (PHIO-P) were collected from the adsorption column of the wastewater treatment plant, and desorption experiments of the adsorbent were carried out. Our results showed that the formation of precipitates on the surface of PHIO-P might block the porous channel of the adsorbent and decrease its arsenic adsorption capacity. In the dynamic arsenic desorption experiment, the arsenic desorption equilibrium was achieved more quickly at decreasing desorption velocity, and higher arsenic desorption efficiency was obtained at increasing NaOH concentration in regenerant. It was found that the PHIO-P adsorbent could be well regenerated at 1.0 M NaOH solution and desorption velocity of 5 BV h−1. Comparing with the raw adsorbent, the maximum arsenic adsorption capacity of PHIO-P decreased by 41.1% after practical running for 26 months. Additionally, the frequently used waste PHIO adsorbent could be treated as non-hazardous material in the arsenic-containing wastewater treatment process after long-time use.


Al-Khidmah ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 24
Author(s):  
RM Rustamaji ◽  
Kiki Prio Utomo ◽  
Hendri Sutrisno

An-Nur and Darussalam Boarding School use well water for bathing, washing and latrines (MCK). However, well water contains high levels of iron and manganese. Therefore, it's needed clean water treatment technology. The water treatment system consists of aeration, adsorption, and filtration. The purpose of PKM is to provide clean water for partners. The method is a participatory and collaborative method whereby partners participate in planning, socialization and training, and operation and maintenance of water treatment plant. The PKM product is easy-to-use water treatment plant and the processed water is odorless, not turbid and colorless or clear. The main key to the success of clean water treatment PKM in An-Nur and Darussalam Boarding School is good communication and smoothly between PKM team and partners.


Sign in / Sign up

Export Citation Format

Share Document