scholarly journals Spatial Variation and Source of Dissolved Heavy Metals in the Lancangjiang River, Southwest China

Author(s):  
Bin Liang ◽  
Guilin Han ◽  
Jie Zeng ◽  
Rui Qu ◽  
Man Liu ◽  
...  

Dissolved heavy metals are not only the essential micronutrients, but also the toxic elements for human bodies. To investigate the heavy metal sources and assess the water quality of the Lancangjiang River, dissolved Cr, Ni, Cu, Zn, Mo, and Pb were detected in this study. The results show that dissolved Ni and Mo, Cr and Pb, and Cu and Zn were similarly distributed within the drainage basin. The correlation analysis exhibited that dissolved Ni and Mo had correlation with water parameter, and dissolved Cu was weakly correlated with Ni, indicating that they might be affected by natural processes. The principal component analysis explained 68.342% of the total variance for three principal components, of which dissolved Ni, Mo, and Cu were controlled by natural inputs; dissolved Cu and Cr were affected by anthropogenic activities; and dissolved Zn was influenced by agricultural activities in the downstream. The water quality showed that the water in upstream was worse than in midstream and downstream, and the whole drainage basin had water of excellent quality. Water within the drainage basin poses no risks to human bodies via daily diets and dermal routes. Dissolved Zn, Cu, and Mo occupied the major proportion of heavy metals transporting into the Mekong River. The agricultural inputs of dissolved Zn might pose potential risks to the Mekong River.

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2078
Author(s):  
Jie Zeng ◽  
Guilin Han ◽  
Mingming Hu ◽  
Yuchun Wang ◽  
Jinke Liu ◽  
...  

Dissolved heavy metals (HMs), derived from natural and anthropogenic sources, are an important part of aquatic environment research and gain more international concern due to their acute toxicity. In this study, the geochemistry of dissolved HMs was analyzed in the upper Three Gorges Reservoir (TGR) of the Yangtze River (YZR) watershed to explore their distribution, status, and sources and further evaluate the water quality and HM-related risks. In total, 57 water samples were collected from the main channel and tributaries of the upper TGR. The concentrations of eight HMs, namely V, Ni, Cu, Zn, As, Mo, Cd, and Pb, were measured by ICP-MS. The mean concentrations (in μg/L) of eight HMs decreased in the order: As (1.46), V (1.44), Ni (1.40), Mo (0.94), Cu (0.86), Zn (0.63), Pb (0.03), and Cd (0.01). The concentrations of most HMs were 1.4~8.1 times higher than that in the source area of the YZR, indicating a potential anthropogenic intervention in the upper TGR. Spatially, the concentrations of V, Cu, As, and Pb along the main channel gradually decreased, while the others were relatively stable (except for Cd). The different degrees of variations in HM concentrations were also found in tributaries. According to the correlation analysis and principal component (PC) analysis, three PCs were identified and explained 75.1% of the total variances. combined with the concentrations of each metal, PC1 with high loadings of V, Ni, As, and Mo was considered as the main contribution of human inputs, PC2 (Cu and Pb) was primarily attributed to the contribution of mixed sources of human emissions and natural processes, and Zn and Cd in PC3 were controlled by natural sources. Water quality assessment suggested the good water quality (meeting the requirements for drinking purposes) with WQI values of 14.1 ± 3.4 and 11.6 ± 3.6 in the main channel and tributaries, respectively. Exposure risk assessment denoted that the health effects of selected HMs on the human body were limited (hazard index, HI < 1), but the potential risks of V and As with HI > 0.1 were non-negligible, especially for children. These findings provide scientific support for the environmental management of the upper TGR region and the metal cycle in aquatic systems.


2018 ◽  
Vol 21 (1) ◽  
pp. 7-13

<p>The Amvrakikos Bay is one of the most important ecosystems in the Mediterranean with great environmental, ecological and biological value. However, over the years, water quality has suffered severe degradation and is now one of the most polluted environmental areas in Greece. In the present study, using the analytical data of concentrations of precipitated metal deposits at the bottom of Amvrakikos Gulf, at its three largest lagoons: Logaros, Tsoukalio and Rodia, and by applying the indicators PLI, Igeo and EF, an assessment of the level of pollution of the area was made. The use of these indicators may show the degree of pollution of the area with heavy metals, and reveal the source of pollution i,e. whether the heavy metals are of anthropogenic or of natural processes, assessing simultaneously the degree of anthropogenic effect. Based on the PLI indicator, the marine zone in Menidi and Paliovarka as well as the Rodia and Tsoukalio lagoons are considered to be polluted. According to the Igeo Index, the sampling areas are unchanged to slightly burden by heavy metals. The largest charge is caused by Ni, followed by Mn and Pb. Based on EF, the concentrations of Cr, Mn, Co, Pb and Ni are significantly influenced by the various anthropogenic activities.</p>


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9660
Author(s):  
Shilin Gao ◽  
Zhuhong Wang ◽  
Qixin Wu ◽  
Jie Zeng

Heavy metals are of public concern in aquatic ecosystems due to their growing release from industries and mining activities. This study investigated the sources, temporal-spatial distributions and water quality of dissolved heavy metals (Mn, Co, Al, Ni, Ba, V, Sb, Fe, Sr) in the Lake Aha watershed, an area under the influence of sewage and acid mining drainage. These heavy metals displayed significant spatial and temporal variabilities. The water quality index results (WQI values ranged from 3.21 to 15.64) and health risk assessment (all hazard indexes are below 1) indicated that dissolved heavy metals in this study pose a low risk for human health. Correlation analysis and principal component analysis indicated that Fe and Sr mainly presented a natural geological feature in the study area, and Mn, Co, Al and Ni were influenced by the acid coal mine drainage, whereas Ba, V and Sb were under the impact of local industrial or medical activities. This study provides new insights into the risk assessment of heavy metals in small watersheds.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 380 ◽  
Author(s):  
Bin Liang ◽  
Guilin Han ◽  
Man Liu ◽  
Xiaoqiang Li ◽  
Chao Song ◽  
...  

River water samples between August 2017 (wet season) and March 2018 (dry season) from the Mun River Basin in northeast Thailand were collected and their dissolved heavy metals concentrations (Al, Mn, Fe, Cu, Zn, and Ba) were measured. Compared with international drinking water guidelines, Mn was the dominant pollutant in the dry season. The correlation analysis (CA) suggested that similar sources were shown in each element pair of Al-Fe, Mn-Zn, and Fe-Ba in both seasons. The principal component analysis (PCA) results showed that the dominant source of dissolved heavy metals was sedimentary inputs or colloid destabilization in the wet season, while anthropogenic inputs were the main sources in the dry season, such as agricultural runoff, industrial effluents, and domestic discharge. On the basis of water quality index (WQI), water at most sites in the wet and dry seasons can be categorized as excellent water, except for a few sites with substandard values. The river water posed no significant health risks according to the health risk assessment, but Mn, Fe, and Ba needed to be paid more attention due to the relatively high values. Al, Fe, and Ba were the main dissolved heavy metals flowing into the Mekong River, and Cu contributed to the background value in the Mekong river.


2020 ◽  
Vol 32 (4) ◽  
pp. 827-834
Author(s):  
Muhammad Towhid Moula ◽  
Ranjit K. Nath ◽  
Mh. Mosfeka Chowdhury ◽  
Md. Abu Bakar Siddique

Halda is an important river of Bangladesh, is now polluted in different ways through industrial, agricultural, domestic and sewage disposal. Increased anthropogenic activities have increased the potential pollution of the river and excessive pollutants may be toxic to humans and aquatic fauna. Presence of heavy metals in the river water causes perilous impact on the aquatic organisms. Hence, regular monitoring of pollution levels in the river is indispensable. In this study, we discuss about physico-chemical assessments of water quality parameters viz. pH, dissolve oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total solid (TS), total suspended solid (TSS), total dissolved substance (TDS), total alkalinity, turbidity, salinity, electrical conductivity (EC), hardness, chloride and heavy metals in the water of Halda river during rainy and winter seasons, at different points; sources of pollutants in water and their effects given starting from the early research until the current research.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1673
Author(s):  
Claude Daou ◽  
Mervat El Hoz ◽  
Amine Kassouf ◽  
Bernard Legube

The primary objective of this study is to explore a water quality database on two Mediterranean rivers (the Kadisha-Abou Ali and El Jaouz rivers—located in north Lebanon), considering their physicochemical, microbiological and fluorescence characteristics. Principal Component Analysis (PCA) was applied to the matrix gathering physicochemical and microbiological data while the Common Components and Specific Weight Analysis (CCSWA) or ComDim was used for fluorescence excitation-emission matrices (EEMs). This approach provided complementary and valuable information regarding water quality in such complex ecosystem. As highlighted by the PCA and ComDim scores, the Kadisha-Abou Ali River is highly influenced by anthropogenic activities because its watershed districts are intensively populated. This influence reveals the implication of organic and bacteriological parameters. To the contrary, the El Jaouz watershed is less inhabited and is characterized by mineral parameters, which determines its water quality. This work highlighted the relationship between fluorescence EEMs and major water quality parameters, enabling the selection of reliable water quality indicators for the studied rivers. The proposed methodology can surely be generalized to the monitoring of surface water quality in other rivers. Each customized water quality fingerprint should constantly be inspected in order to account for any emerging pollution.


2012 ◽  
Vol 610-613 ◽  
pp. 3067-3074
Author(s):  
Kun Shi ◽  
Dong Sheng Li ◽  
Bi Yun Zhao

1144 sample points were collected using PXRF from an area of 99 square kilometers soil area Zhehai town Huizhe county of Yunnan province to acquire their concentrations and possible sources, and characterize their spatial variability for risk assessment. SPSS16.0 was used to deal the raw date and eliminate the outfits and perform Multivariate analysis (correlation matrix, principal component analysis, and cluster analysis). It discriminate distinct groups of heavy metals. From the Range of the semi-variorum models, it obtained elements spatial structure and the contamination resource caused mainly by natural resource or anthropogenic activities. The result of risk assessment attained the percentage of pollution accounts for whole investigate region, which provides the reference to deal with the soil pollution.


2020 ◽  
Vol 16 (4) ◽  
pp. 458-463
Author(s):  
Ateshan Msahir Haidr ◽  
Misnan Rosmilah ◽  
Sinang Som Cit ◽  
Koki Baba Isa

This study investigates the temporal water quality variations and pollution sources identification in Merbok River using principal component analysis. The variables analyzed include As, Cd, Pb, Fe, Cr, Mn, Zn, Ni, Ca, Mg, Na, K, NH4, F, Cl, Br, NO2, NO3, SO4, PO4, pH, BOD, DO, COD, turbidity, and salinity. These variables were analyzed using inductively coupled plasma mass spectrometry, ion chromatography, and YSI multiprobe. Principal component analysis (PCA) was utilized to evaluate the variations of the most significant water quality parameters and identify the probable source of the pollutants. From the results of PCA, 86% of the total variations were observed in the water quality data with strong dominance of toxic heavy metals (As, Pb, and Cr), parameters associated with industrial discharge, domestic inputs, overland runoff (NH4, pH, BOD, DO, COD), agrochemicals (NO2, NO3, SO4, PO4), and weathering of basement rocks (Ca, Mg, Cl, F, K, and Na). Most of these parameters were present in concentrations exceeded the reference standards limits used in this study, indicating pollution of the river water. Together with the presence of microbial contamination, the results suggest potential human health risk due to water uses, fish and shellfish consumption. Moreover, the results revealed that anthropogenic activities and weathering were the main sources of pollutants in Merbok River. 


Author(s):  
Shefaliben Sureshbhai Patel ◽  
Susmita Sahoo

The seasonal investigation about the water quality from Damanganga river estuary on two habitats downstream and upstream was carried out from January to December 2019 containing three major seasons: winter, summer and monsoon. For this monitoring activity total 29 parameters (24 physico-chemical parameters and 5 heavy metals) were analyzed. Multivariate analyses suggested inter dependency among these studied parameters. Water Quality Index is computed based on the major fluctuated and affected parameters. The calculated values of WQI for all three seasons ranged from 122.84 to 173.82 which suggested poor water quality of the water body. WQI values of the investigation area proposed that the estuarine water quality is deteriorated due to high value of presented heavy metals (Aluminum, Iron, Manganese, Boron and Zinc), Chloride, Ammonium and Sulfate in water sample. In this case, the downstream station is having accessional pollutant contaminations while the upstream station is having diminutive pollutant contaminants. Temporally, the dominant frailty found during the winter followed by summer and monsoon. This study field exhibited poor quality of water; the reason behind this might be the impressive surrounding industrial zone as well as other anthropogenic activities. There is quite normal probability distribution expressed by the represented water quality data at the both habitats. The Bray-Curtis cluster analysis shows different percentage similarity level between the water quality parameters.  


Sign in / Sign up

Export Citation Format

Share Document