scholarly journals Antibacterial Activity against Staphylococcus Aureus of Titanium Surfaces Coated with Graphene Nanoplatelets to Prevent Peri-Implant Diseases. An In-Vitro Pilot Study

Author(s):  
Nicola Pranno ◽  
Gerardo La Monaca ◽  
Antonella Polimeni ◽  
Maria Sabrina Sarto ◽  
Daniela Uccelletti ◽  
...  

Dental implants are one of the most commonly used ways to replace missing teeth. Nevertheless, the close contact with hard and soft oral tissues expose these devices to infectious peri-implant diseases. To prevent such infection, several surface treatments have been developed in the last few years to improve the antimicrobial properties of titanium dental implants. In this in-vitro pilot study, the antimicrobial activity of titanium surfaces coated with different types of graphene nanoplatelets are investigated. Six different colloidal suspensions of graphene nanoplatelets (GNPs) were produced from graphite intercalated compounds, setting the temperature and duration of the thermal shock and varying the number of the exfoliation cycles. Titanium disks with sand-blasted and acid-etched surfaces were sprayed with 2 mL of colloidal GNPs suspensions. The size of the GNPs and the percentage of titanium disk surfaces coated by GNPs were evaluated through a field emission-scanning electron microscope. The antibacterial activity of the specimens against Staphylococcus aureus was estimated using a crystal violet assay. The dimension of GNPs decreased progressively after each sonication cycle. The two best mean percentages of titanium disk surfaces coated by GNPs were GNPs1050°/2 and GNPs1150°/2. The reduction of biofilm development was 14.4% in GNPs1150°/2, 20.1% in GNPs1150°/3, 30.3% in GNPs1050°/3, and 39.2% in GNPs1050°/2. The results of the study suggested that the surface treatment of titanium disks with GNPs represents a promising solution to improve the antibacterial activity of titanium implants.

2021 ◽  
Vol 11 (12) ◽  
pp. 5324
Author(s):  
Maria Menini ◽  
Francesca Delucchi ◽  
Domenico Baldi ◽  
Francesco Pera ◽  
Francesco Bagnasco ◽  
...  

(1) Background: Intrinsic characteristics of the implant surface and the possible presence of endotoxins may affect the bone–implant interface and cause an inflammatory response. This study aims to evaluate the possible inflammatory response induced in vitro in macrophages in contact with five different commercially available dental implants. (2) Methods: one zirconia implant NobelPearl® (Nobel Biocare) and four titanium implants, Syra® (Sweden & Martina), Prama® (Sweden & Martina), 3iT3® (Biomet 3i) and Shard® (Mech & Human), were evaluated. After 4 h of contact of murine macrophage cells J774a.1 with the implants, the total RNA was extracted, transcribed to cDNA and the gene expression of the macrophages was evaluated by quantitative PCR (qPCR) in relation to the following genes: GAPDH, YWHAZ, IL1β, IL6, TNFα, NOS2, MMP-9, MMP-8 and TIMP3. The results were statistically analyzed and compared with negative controls. (3) Results: No implant triggered a significant inflammatory response in macrophages, although 3iT3 exhibited a slight pro-inflammatory effect compared to other samples. (4) Conclusions: All the samples showed optimal outcomes without any inflammatory stimulus on the examined macrophagic cells.


2021 ◽  
Vol 9 (2) ◽  
pp. 450
Author(s):  
Maigualida Cuenca ◽  
María Carmen Sánchez ◽  
Pedro Diz ◽  
Lucía Martínez-Lamas ◽  
Maximiliano Álvarez ◽  
...  

The aim of this study was to evaluate the potential anti-biofilm and antibacterial activities of Streptococcus downii sp. nov. To test anti-biofilm properties, Streptococcus mutans, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans were grown in a biofilm model in the presence or not of S. downii sp. nov. for up to 120 h. For the potential antibacterial activity, 24 h-biofilms were exposed to S. downii sp. nov for 24 and 48 h. Biofilms structures and bacterial viability were studied by microscopy, and the effect in bacterial load by quantitative polymerase chain reaction. A generalized linear model was constructed, and results were considered as statistically significant at p < 0.05. The presence of S. downii sp. nov. during biofilm development did not affect the structure of the community, but an anti-biofilm effect against S. mutans was observed (p < 0.001, after 96 and 120 h). For antibacterial activity, after 24 h of exposure to S. downii sp. nov., counts of S. mutans (p = 0.019) and A. actinomycetemcomitans (p = 0.020) were significantly reduced in well-structured biofilms. Although moderate, anti-biofilm and antibacterial activities of S. downii sp. nov. against oral bacteria, including some periodontal pathogens, were demonstrated in an in vitro biofilm model.


2011 ◽  
Vol 4 (1) ◽  
pp. 22-25 ◽  
Author(s):  
M Bashir ◽  
I Yusuf ◽  
AS Kutama

Five traditional herbal preparations were sampled between May-June, 2009 in Kano. The samples were investigated for invitro antibacterial activities against clinical isolates of Staphylococcus aureus. Likewise, phytochemical screening tests were conducted to determine some of the phytochemicals present in the ethanolic and water extracts of the samples. Various concentrations of the extracts were prepared using serial doubling dilutions (5000=l/ml, 2500=g/ml, 1250=g/ml, 625=g/ml and 312.5=g/ml). All the test extracts showed slight antibacterial activity against the test organism, with ethanolic extract of sample E having the highest zone diameter of inhibition, while sample H had the lowest diameter of inhibition. The standard antibiotic disc (Gentamicin) had demonstrated the highest activity on the test organisms. The results of the Phytochemical screening revealed the presence of steroid in all the samples, tannin in samples A, C, D and E, reducing sugars in sample A, D and E respectively. The result of the minimum inhibitory concentration (MIC) was found to be above 312.5=g/ml for samples C, D and E. Keywords: Staphylococcus aureus, Herbal preparations, antibacterial activity, Phytochemical screening and minimum inhibitory concentration.


2018 ◽  
Vol 7 (4) ◽  
pp. 392-398
Author(s):  
B.T Yunana ◽  
◽  
B. B Bukar ◽  
J. C Aguiyi ◽  
◽  
...  

The ethanol extracts of root, bark and leaf of Bridelia ferruginea was investigated for antibacterial activity against clinical isolate of Staphylococcus aureus and Escherichia coli. The extracts had significant antibacterial activity in vitro at concentration of 25 mg/ml, 50 mg/ml, 100 mg/ml and 200 mg/ml and in vivo at dose of 50 mg/kg and 100 mg/kg. The root extract in vitro had the highest zone of inhibition, followed by the bark extract for both Staphylococcus aureus and Escherichia coli. The concentration of 200 mg/ml had the highest zone of inhibition in vitro. The minimum inhibitory concentration (MIC) showed a decreasing inhibitory effect of the plant extracts for both Staphylococcus aureus and Escherichia coli as the concentration decreases with root having 3.125 mg/ml, bark having 6.25 mg/ml and leaf having 25 mg/ml for Staphylococcus aureus and Escherichia coli. Likewise, the minimum bactericidal concentration (MBC) showed decreasing bactericide effects with decrease concentration with root having 12.5 mg/ml, bark having 12.5 mg/ml and leaf having 25 mg/ml for Escherichia coli while root had 6.25mg/ml, bark had 12.5mg/ml and leaf had 25mg/ml for Staphylococcus aureus. The in vivo investigation showed that the root and bark extract exhibited antibacterial activity on both Staphylococcus aureus and Escherichia coli at doses of 100mg/kg and 50mg/kg; the root extract had higher activity than the bark and root/bark combined. The dose of 100 mg/kg had the highest colonies reduction for Staphylococcus aureus and Escherichia coli in vivo. Preliminary phytochemical screening of root, bark and leaves of Bridelia ferruginea revealed the presence of tannins, flavonoids, carbohydrates, cardiac glycoside (root, bark and leaves), saponins (root and bark). The presence of tannins, saponins, flavonoid, cardiac glycoside and carbohydrate in the bark and root extracts of the plant indicates that the bark and root extracts were pharmacological importance


Author(s):  
Ouattara Karamoko ◽  
Dibi Koffi Saint Didier ◽  
Kone Monon ◽  
Ouattara Abou ◽  
Bagre Issa

The emergence of infectious diseases, particularly staphylococcal infections, treatment failures and the more high cost of treatment of infections caused by resistant staphylococci called to find other care alternatives. This study was initiated to evaluate the antibacterial activity of the aqueous extract from Garcinia kola almonds on the in vitro growth of Staphylococcus aureus strains. The methods of diffusion in agar and liquid media were used for susceptibility testing and MIC and MBC determination. The tests were performed on four strains of S. aureus and one reference strain. The minimum inhibitory concentrations of the extracts ranged from 3.12 mg/mL and 12.5 mg/mL and the minimum bactericidal concentrations between 6.25 mg/mL and 25 mg/mL. The lowest value of MIC and MBC was observed with S. aureus ATCC 29213 while the greatest value of these same parameters was obtained on S. aureus 993C/18 and S. aureus 1075C/18. The aqueous almonds extract of Garcinia kola had a bactericidal activity on all the strains of S. aureus studied. This could justify the use of Garcinia kola almonds in the treatment of various diseases in traditional society.


2006 ◽  
Vol 8 (2) ◽  
pp. 160
Author(s):  
Aswan Thamin ◽  
Chairulwan Umar ◽  
Darussadah Paransa

Grapsus albolineatus is one of marine crustaceans which have carotenoid (astaxanthin) pigment. This research was conducted to analyze carotenoids (astaxanthin) extracted from G. albolineatus, and evaluate their in vitro antibacterial activity. The research was done in March-July 2002. Samples were collected from Manado Gulf, North Sulawesi. The result indicated that the carapace contained 4 carotenoids namely ß-caroten, ecinenon, astaxanthin diester, and astaxanthin monoester. In addition, the epidermis contained free astaxanthin. In vitro antibacterial activity test indicated that astaxanthin had low bacteriostatic activity against Psedomonas aeruginosa, Enterobacter cloacae, Staphylococcus aureus, and Proteus stuartii.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1481
Author(s):  
John Jairo Aguilera-Correa ◽  
Sara Fernández-López ◽  
Iskra Dennisse Cuñas-Figueroa ◽  
Sandra Pérez-Rial ◽  
Hanna-Leena Alakomi ◽  
...  

Staphylococcus aureus is the most common cause of surgical site infections and its treatment is challenging due to the emergence of multi-drug resistant strains such as methicillin-resistant S. aureus (MRSA). Natural berry-derived compounds have shown antimicrobial potential, e.g., ellagitannins such as sanguiin H-6 and lambertianin C, the main phenolic compounds in Rubus seeds, have shown antimicrobial activity. The aim of this study was to evaluate the effect of sanguiin H-6 and lambertianin C fractionated from cloudberry seeds, on the MRSA growth, and as treatment of a MRSA biofilm development in different growth media in vitro and in vivo by using a murine wound infection model where sanguiin H-6 and lambertianin C were used to prevent the MRSA infection. Sanguiin H-6 and lambertianin C inhibited the in vitro biofilm development and growth of MRSA. Furthermore, sanguiin H-6 showed significant anti-MRSA effect in the in vivo wound model. Our study shows the possible use of sanguiin H-6 as a preventive measure in surgical sites to avoid postoperative infections, whilst lambertianin C showed no anti-MRSA activity.


Author(s):  
Junchen Huang ◽  
Siwei Guo ◽  
Xin Li ◽  
Fang Yuan ◽  
You Li ◽  
...  

Reduced susceptibility and emergence of resistance to vancomycin in methicillin-resistant Staphylococcus aureus (MRSA) have led to the development of various vancomycin based combinations. Nemonoxacin is a novel nonfluorinated quinolone with antibacterial activity against MRSA. The present study aimed to investigate the effects of nemonoxacin on antibacterial activity and the anti-resistant mutation ability of vancomycin for MRSA and explore whether quinolone resistance genes are associated with a reduction in the vancomycin minimal inhibitory concentration (MIC) and mutant prevention concentration (MPC) when combined with nemonoxacin. Four isolates, all with a vancomycin MIC of 2 μg/mL, were used in a modified in vitro dynamic pharmacokinetic/pharmacodynamic model to investigate the effects of nemonoxacin on antibacterial activity (M04, M23 and M24) and anti-resistant mutation ability (M04, M23 and M25, all with MPC ≥19.2 μg/mL) of vancomycin. The mutation sites of gyrA , gyrB , parC , and parE of 55 clinical MRSA isolates were sequenced. We observed that in M04 and M23, the combination of vancomycin (1g q12h) and nemonoxacin (0.5g qd) showed a synergistic bactericidal activity and resistance enrichment suppression. All clinical isolates resistant to nemonoxacin harbored gyrA (S84→L) mutation; gyrA (S84→L) and parC (E84→K) mutations were the two independent risk factors for the unchanged vancomycin MPC in combination. Nemonoxacin enhances the bactericidal activity and suppresses resistance enrichment ability of vancomycin against MRSA with a MIC of 2 μg/mL. Our in vitro data support the combination of nemonoxacin and vancomycin for the treatment of MRSA infection with a high MIC.


Sign in / Sign up

Export Citation Format

Share Document