scholarly journals A Deep Neural Network-Based Method for Prediction of Dementia Using Big Data

Author(s):  
Jungyoon Kim ◽  
Jihye Lim

The rise in dementia among the aging Korean population will quickly create a financial burden on society, but timely recognition of early warning for dementia and proper responses to the occurrence of dementia can enhance medical treatment. Health behavior and medical service usage data are relatively more accessible than clinical data, and a prescreening tool with easily accessible data could be a good solution for dementia-related problems. In this paper, we apply a deep neural network (DNN) to prediction of dementia using health behavior and medical service usage data, using data from 7031 subjects aged over 65 collected from the Korea National Health and Nutrition Examination Survey (KNHANES) in 2001 and 2005. In the proposed model, principal component analysis (PCA) featuring and min/max scaling are used to preprocess and extract relevant background features. We compared our proposed methodology, a DNN/scaled PCA, with five well-known machine learning algorithms. The proposed methodology shows 85.5% of the area under the curve (AUC), a better result than that using other algorithms. The proposed early prescreening method for possible dementia can be used by both patients and doctors.

Author(s):  
Songhee Cheon ◽  
Jungyoon Kim ◽  
Jihye Lim

The increase in stroke incidence with the aging of the Korean population will rapidly impose an economic burden on society. Timely treatment can improve stroke prognosis. Awareness of stroke warning signs and appropriate actions in the event of a stroke improve outcomes. Medical service use and health behavior data are easier to collect than medical imaging data. Here, we used a deep neural network to detect stroke using medical service use and health behavior data; we identified 15,099 patients with stroke. Principal component analysis (PCA) featuring quantile scaling was used to extract relevant background features from medical records; we used these to predict stroke. We compared our method (a scaled PCA/deep neural network [DNN] approach) to five other machine-learning methods. The area under the curve (AUC) value of our method was 83.48%; hence; it can be used by both patients and doctors to prescreen for possible stroke.


Author(s):  
Jihye Lim ◽  
Jungyoon Kim ◽  
Songhee Cheon

A large number of people suffer from certain types of osteoarthritis, such as knee, hip, and spine osteoarthritis. A correct prediction of osteoarthritis is an essential step to effectively diagnose and prevent severe osteoarthritis. Osteoarthritis is commonly diagnosed by experts through manual inspection of patients’ medical images, which are usually collected in hospitals. Checking the occurrence of osteoarthritis is somewhat time-consuming for patients. In addition, the current studies are focused on automatically detecting osteoarthritis through image-based deep learning algorithms. This needs patients’ medical images, which requires patients to visit the hospital. However, medical utilization and health behavior information as statistical data are easier to collect and access than medical images. Using indirect statistical data without any medical images to predict the occurrence of diverse forms of OA can have significant impacts on pro-active and preventive medical care. In this study, we used a deep neural network for detecting the occurrence of osteoarthritis using patient’s statistical data of medical utilization and health behavior information. The study was based on 5749 subjects. Principal component analysis with quantile transformer scaling was employed to generate features from the patients’ simple background medical records and identify the occurrence of osteoarthritis. Our experiments showed that the proposed method using deep neural network with scaled PCA resulted in 76.8% of area under the curve (AUC) and minimized the effort to generate features. Hence, this methos can be a promising tool for patients and doctors to prescreen for possible osteoarthritis to reduce health costs and patients’ time in hospitals.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 354
Author(s):  
Lu Zhang ◽  
Xinyi Qin ◽  
Min Liu ◽  
Ziwei Xu ◽  
Guangzhong Liu

As a prevalent existing post-transcriptional modification of RNA, N6-methyladenosine (m6A) plays a crucial role in various biological processes. To better radically reveal its regulatory mechanism and provide new insights for drug design, the accurate identification of m6A sites in genome-wide is vital. As the traditional experimental methods are time-consuming and cost-prohibitive, it is necessary to design a more efficient computational method to detect the m6A sites. In this study, we propose a novel cross-species computational method DNN-m6A based on the deep neural network (DNN) to identify m6A sites in multiple tissues of human, mouse and rat. Firstly, binary encoding (BE), tri-nucleotide composition (TNC), enhanced nucleic acid composition (ENAC), K-spaced nucleotide pair frequencies (KSNPFs), nucleotide chemical property (NCP), pseudo dinucleotide composition (PseDNC), position-specific nucleotide propensity (PSNP) and position-specific dinucleotide propensity (PSDP) are employed to extract RNA sequence features which are subsequently fused to construct the initial feature vector set. Secondly, we use elastic net to eliminate redundant features while building the optimal feature subset. Finally, the hyper-parameters of DNN are tuned with Bayesian hyper-parameter optimization based on the selected feature subset. The five-fold cross-validation test on training datasets show that the proposed DNN-m6A method outperformed the state-of-the-art method for predicting m6A sites, with an accuracy (ACC) of 73.58%–83.38% and an area under the curve (AUC) of 81.39%–91.04%. Furthermore, the independent datasets achieved an ACC of 72.95%–83.04% and an AUC of 80.79%–91.09%, which shows an excellent generalization ability of our proposed method.


Kybernetes ◽  
2019 ◽  
Vol 49 (9) ◽  
pp. 2335-2348 ◽  
Author(s):  
Milad Yousefi ◽  
Moslem Yousefi ◽  
Masood Fathi ◽  
Flavio S. Fogliatto

Purpose This study aims to investigate the factors affecting daily demand in an emergency department (ED) and to provide a forecasting tool in a public hospital for horizons of up to seven days. Design/methodology/approach In this study, first, the important factors to influence the demand in EDs were extracted from literature then the relevant factors to the study are selected. Then, a deep neural network is applied to constructing a reliable predictor. Findings Although many statistical approaches have been proposed for tackling this issue, better forecasts are viable by using the abilities of machine learning algorithms. Results indicate that the proposed approach outperforms statistical alternatives available in the literature such as multiple linear regression, autoregressive integrated moving average, support vector regression, generalized linear models, generalized estimating equations, seasonal ARIMA and combined ARIMA and linear regression. Research limitations/implications The authors applied this study in a single ED to forecast patient visits. Applying the same method in different EDs may give a better understanding of the performance of the model to the authors. The same approach can be applied in any other demand forecasting after some minor modifications. Originality/value To the best of the knowledge, this is the first study to propose the use of long short-term memory for constructing a predictor of the number of patient visits in EDs.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Mansi Gupta ◽  
Kumar Rajnish ◽  
Vandana Bhattacharjee

Deep neural network models built by the appropriate design decisions are crucial to obtain the desired classifier performance. This is especially desired when predicting fault proneness of software modules. When correctly identified, this could help in reducing the testing cost by directing the efforts more towards the modules identified to be fault prone. To be able to build an efficient deep neural network model, it is important that the parameters such as number of hidden layers, number of nodes in each layer, and training details such as learning rate and regularization methods be investigated in detail. The objective of this paper is to show the importance of hyperparameter tuning in developing efficient deep neural network models for predicting fault proneness of software modules and to compare the results with other machine learning algorithms. It is shown that the proposed model outperforms the other algorithms in most cases.


Author(s):  
Syed Khurram Jah Rizvi ◽  
Warda Aslam ◽  
Muhammad Shahzad ◽  
Shahzad Saleem ◽  
Muhammad Moazam Fraz

AbstractEnterprises are striving to remain protected against malware-based cyber-attacks on their infrastructure, facilities, networks and systems. Static analysis is an effective approach to detect the malware, i.e., malicious Portable Executable (PE). It performs an in-depth analysis of PE files without executing, which is highly useful to minimize the risk of malicious PE contaminating the system. Yet, instant detection using static analysis has become very difficult due to the exponential rise in volume and variety of malware. The compelling need of early stage detection of malware-based attacks significantly motivates research inclination towards automated malware detection. The recent machine learning aided malware detection approaches using static analysis are mostly supervised. Supervised malware detection using static analysis requires manual labelling and human feedback; therefore, it is less effective in rapidly evolutionary and dynamic threat space. To this end, we propose a progressive deep unsupervised framework with feature attention block for static analysis-based malware detection (PROUD-MAL). The framework is based on cascading blocks of unsupervised clustering and features attention-based deep neural network. The proposed deep neural network embedded with feature attention block is trained on the pseudo labels. To evaluate the proposed unsupervised framework, we collected a real-time malware dataset by deploying low and high interaction honeypots on an enterprise organizational network. Moreover, endpoint security solution is also deployed on an enterprise organizational network to collect malware samples. After post processing and cleaning, the novel dataset consists of 15,457 PE samples comprising 8775 malicious and 6681 benign ones. The proposed PROUD-MAL framework achieved an accuracy of more than 98.09% with better quantitative performance in standard evaluation parameters on collected dataset and outperformed other conventional machine learning algorithms. The implementation and dataset are available at https://bit.ly/35Sne3a.


2020 ◽  
Vol 9 (1) ◽  
pp. 2011-2017

The increasing in the incidence of stroke with aging world population would quickly place an economic burden on society. In proposed method we use different machine learning classification algorithms like Decision Tree, Deep Neural Network Learning, Maximum Expectization , Random Forest and Gaussian Naïve Bayesian Classifier is used with associated number of attributes to estimate the occurrence of stroke disease. The present research, mainly PCA (Principal Component Analysis) algorithm is used to limit the performance and scaling used to be adopted to extract splendid context statistics from medical records. We used those reduced features to determine whether or not the patient has a stroke disorder. We compared proposed method Deep neural network learning classifier with other machine-learning methods with respect to accuracy, sensitivity and specificity that yields 86.42%, 74.89 and 88.49% respectively. Hence it can be with the aid of both patients and medical doctors to treat viable stroke.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8467
Author(s):  
Mahmoud Elsisi ◽  
Minh-Quang Tran

This paper introduces an integrated IoT architecture to handle the problem of cyber attacks based on a developed deep neural network (DNN) with a rectified linear unit in order to provide reliable and secure online monitoring for automated guided vehicles (AGVs). The developed IoT architecture based on a DNN introduces a new approach for the online monitoring of AGVs against cyber attacks with a cheap and easy implementation instead of the traditional cyber attack detection schemes in the literature. The proposed DNN is trained based on experimental AGV data that represent the real state of the AGV and different types of cyber attacks including a random attack, ramp attack, pulse attack, and sinusoidal attack that is injected by the attacker into the internet network. The proposed DNN is compared with different deep learning and machine learning algorithms such as a one dimension convolutional neural network (1D-CNN), a supported vector machine model (SVM), random forest, extreme gradient boosting (XGBoost), and a decision tree for greater validation. Furthermore, the proposed IoT architecture based on a DNN can provide an effective detection for the AGV status with an excellent accuracy of 96.77% that is significantly greater than the accuracy based on the traditional schemes. The AGV status based on the proposed IoT architecture with a DNN is visualized by an advanced IoT platform named CONTACT Elements for IoT. Different test scenarios with a practical setup of an AGV with IoT are carried out to emphasize the performance of the suggested IoT architecture based on a DNN. The results approve the usefulness of the proposed IoT to provide effective cybersecurity for data visualization and tracking of the AGV status that enhances decision-making and improves industrial productivity.


Sign in / Sign up

Export Citation Format

Share Document