scholarly journals Mapping of Intrusive Complex on a Small Scale Using Multi-Source Remote Sensing Images

2020 ◽  
Vol 9 (9) ◽  
pp. 543
Author(s):  
Yuzhou Zhang ◽  
Dengrong Zhang ◽  
Jinwei Duan ◽  
Tangao Hu

Multi-stage intrusive complex mapping plays an important role in regional mineralization research. The similarity of lithology characteristics between different stages of intrusions necessitates the use of richer spectral bands, while higher spatial resolution is also essential in small-scale research. In this paper, a multi-source remote sensing data application method was proposed. This method includes a spectral synergy process based on statistical regression and a fusion process using Gram–Schmidt (GS) spectral sharpening. We applied the method with Gaofen-2 (GF2), Sentinel-2, and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data to the mapping of the Mountain Sanfeng intrusive complex in northwest China in which Carboniferous intrusions have been proven to be directly related to the formation of Au deposits in the area. The band ratio (BR) and relative absorption band depth (RBD) were employed to enhance the spectral differences between two stage intrusions, and the Red-Green-Blue (RGB) false colour of the BR and RBD enhancement images performed well in the west and centre. Excellent enhancement results were obtained by making full use of all bands of the synergistic image and using the Band Ratio Matrix (BRM)-Principal Component Analysis (PCA) method in the northeast part of the study area. A crucial improvement in enhancement performance by the GS fusion process and spectral synergy process was thus shown. An accurate mapping result was obtained at the Mountain Sanfeng intrusive complex. This method could support small-scale regional geological survey and mineralization research in this region.

Author(s):  
M. Abdolmaleki ◽  
T. M. Rasmussen ◽  
M. K. Pal

Abstract. Nowadays, remote sensing technologies are playing a significant role in mineral potential mapping. To optimize the exploration approach along with a cost-effective way, narrow down the target areas for a more detailed study for mineral exploration using suitable data selection and accurate data processing approaches are crucial. To establish optimum procedures by integrating space-borne remote sensing data with other earth sciences data (e.g., airborne magnetic and electromagnetic) for exploration of Iron Oxide Copper Gold (IOCG) mineralization is the objective of this study. Further, the project focus is to test the effectiveness of Copernicus Sentinel-2 data in mineral potential mapping from the high Arctic region. Thus, Inglefield Land from northwest Greenland has been chosen as a study area to evaluate the developed approach. The altered minerals, including irons and clays, were mapped utilizing Sentinel-2 data through band ratio and principal component analysis (PCA) methods. Lineaments of the study area were extracted from Sentinel-2 data using directional filters. Self-Organizing Maps (SOM) and Support Vector Machines (SVM) were used for classification and analysing the available data. Further, various thematic maps (e.g., geological, geophysical, geochemical) were prepared from the study area. Finally, a mineral prospectively map was generated by integrating the above mentioned information using the Fuzzy Analytic Hierarchy Process (FAHP). The prepared potential map for IOCG mineralization using the above approach of Inglefield Land shows a good agreement with the previous geological field studies.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3213 ◽  
Author(s):  
Ghasem Askari ◽  
Amin Pour ◽  
Biswajeet Pradhan ◽  
Mehdi Sarfi ◽  
Fatemeh Nazemnejad

Remote sensing imagery has become an operative and applicable tool for the preparation of geological maps by reducing the costs and increasing the precision. In this study, ASTER satellite remote sensing data were used to extract lithological information of Deh-Molla sedimentary succession, which is located in the southwest of Shahrood city, Semnan Province, North Iran. A robust and effective approach named Band Ratio Matrix Transformation (BRMT) was developed to characterize and discriminate the boundary of sedimentary rock formations in Deh-Molla region. The analysis was based on the forward and continuous division of the visible-near infrared (VNIR) and the shortwave infrared (SWIR) spectral bands of ASTER with subsequent application of principal component analysis (PCA) for producing new transform datasets. The approach was implemented to ASTER spectral band ratios for mapping dominated mineral assemblages in the study area. Quartz, carbonate, and Al, Fe, Mg –OH bearing-altered minerals such as kaolinite, alunite, chlorite and mica were appropriately mapped using the BRMT approach. The results match well with geology map of the study area, fieldwork data and laboratory analysis. Accuracy assessment of the mapping result represents a reasonable kappa coefficient (0.70%) and appropriate overall accuracy (74.64%), which verified the robustness of the BRMT approach. This approach has great potential and capability for mapping sedimentary succession with diverse local–geological–physical characteristics around the world.


1996 ◽  
pp. 51-54 ◽  
Author(s):  
N. V. M. Unni

The recognition of versatile importance of vegetation for the human life resulted in the emergence of vegetation science and many its applications in the modern world. Hence a vegetation map should be versatile enough to provide the basis for these applications. Thus, a vegetation map should contain not only information on vegetation types and their derivatives but also the geospheric and climatic background. While the geospheric information could be obtained, mapped and generalized directly using satellite remote sensing, a computerized Geographic Information System can integrate it with meaningful vegetation information classes for large areas. Such aft approach was developed with respect to mapping forest vegetation in India at. 1 : 100 000 (1983) and is in progress now (forest cover mapping at 1 : 250 000). Several review works reporting the experimental and operational use of satellite remote sensing data in India were published in the last years (Unni, 1991, 1992, 1994).


2021 ◽  
Vol 13 (5) ◽  
pp. 853
Author(s):  
Mohsen Soltani ◽  
Julian Koch ◽  
Simon Stisen

This study aims to improve the standard water balance evapotranspiration (WB ET) estimate, which is typically used as benchmark data for catchment-scale ET estimation, by accounting for net intercatchment groundwater flow in the ET calculation. Using the modified WB ET approach, we examine errors and shortcomings associated with the long-term annual mean (2002–2014) spatial patterns of three remote-sensing (RS) MODIS-based ET products from MODIS16, PML_V2, and TSEB algorithms at 1 km spatial resolution over Denmark, as a test case for small-scale, energy-limited regions. Our results indicate that the novel approach of adding groundwater net in water balance ET calculation results in a more trustworthy ET spatial pattern. This is especially relevant for smaller catchments where groundwater net can be a significant component of the catchment water balance. Nevertheless, large discrepancies are observed both amongst RS ET datasets and compared to modified water balance ET spatial pattern at the national scale; however, catchment-scale analysis highlights that difference in RS ET and WB ET decreases with increasing catchment size and that 90%, 87%, and 93% of all catchments have ∆ET < ±150 mm/year for MODIS16, PML_V2, and TSEB, respectively. In addition, Copula approach captures a nonlinear structure of the joint relationship with multiple densities amongst the RS/WB ET products, showing a complex dependence structure (correlation); however, among the three RS ET datasets, MODIS16 ET shows a closer spatial pattern to the modified WB ET, as identified by a principal component analysis also. This study will help improve the water balance approach by the addition of groundwater net in the ET estimation and contribute to better understand the true correlations amongst RS/WB ET products especially over energy-limited environments.


2014 ◽  
Vol 6 (2) ◽  
pp. 113 ◽  
Author(s):  
Nedal Qaoud

Remote sensing data are used to discriminate between the different lithologies covering the Um Had area, Central Eastern Desert of Egypt. Image processing techniques applied to the Enhanced Thematic Mapper (ETM+) data are used for mapping and discriminating the different basement lithologies of Um Had area. Principal component analysis (PCA), minimum noise fraction (MNF) transform and band rationing techniques provide efficient data for lithological mapping. The study area is underlain by gneisses, ophiolitic melange assemblage (talc-serpentinite, metagabbro, metabasalt), granitic rocks, Dokhan volcanics, Hammamat sediments and felsites. The resulting gray-scale PC2, PC3 and PC4 images are best to clearly discriminate the Hammamat sediments, amphibolites and talc-serpentinites, respectively. The gray-scale MNF3 and MNF4 images easily discriminate the felsites and talc-serpentinites, respectively. The band ratio 5/7 and 4/5 images are able to delineate the talc-serpentinites and Hammamat sediments, respectively. Information collected from gray-scale and false color composite images led to generation of detailed lithologic map of Um Had area.


2018 ◽  
Vol 10 (11) ◽  
pp. 1764 ◽  
Author(s):  
Qinhuo Liu ◽  
Guangjian Yan ◽  
Ziti Jiao ◽  
Qing Xiao ◽  
Jianguang Wen ◽  
...  

The academician Xiaowen Li devoted much of his life to pursuing fundamental research in remote sensing. A pioneer in the geometric-optical modeling of vegetation canopies, his work is held in high regard by the international remote sensing community. He codeveloped the Li–Strahler geometric-optic model, and this paper was selected by a member of the International Society for Optical Engineering (SPIE) milestone series. As a chief scientist, Xiaowen Li led a scientific team that made outstanding advances in bidirectional reflectance distribution modeling, directional thermal emission modeling, comprehensive experiments, and the understanding of spatial and temporal scale effects in remote sensing information, and of quantitative inversions utilizing remote sensing data. In addition to his broad research activities, he was noted for his humility and his dedication in making science more accessible for the general public. Here, the life and academic contributions of Xiaowen Li to the field of quantitative remote sensing science are briefly reviewed.


2019 ◽  
Vol 147 (12) ◽  
pp. 4325-4343 ◽  
Author(s):  
Cornelius Hald ◽  
Matthias Zeeman ◽  
Patrick Laux ◽  
Matthias Mauder ◽  
Harald Kunstmann

Abstract A computationally efficient and inexpensive approach for using the capabilities of large-eddy simulations (LES) to model small-scale local weather phenomena is presented. The setup uses the LES capabilities of the Weather Research and Forecasting Model (WRF-LES) on a single domain that is directly driven by reanalysis data as boundary conditions. The simulated area is an example for complex terrain, and the employed parameterizations are chosen in a way to represent realistic conditions during two 48-h periods while still keeping the required computing time around 105 CPU hours. We show by evaluating turbulence characteristics that the model results conform to results from typical LES. A comparison with ground-based remote sensing data from a triple Doppler-lidar setup, employed during the “ScaleX” campaigns, shows the grade of adherence of the results to the measured local weather conditions. The representation of mesoscale phenomena, including nocturnal low-level jets, strongly depends on the temporal and spatial resolution of the meteorological boundary conditions used to drive the model. Small-scale meteorological features that are induced by the terrain, such as katabatic flows, are present in the simulated output as well as in the measured data. This result shows that the four-dimensional output of WRF-LES simulations for a real area and real episode can be technically realized, allowing a more comprehensive and detailed view of the micrometeorological conditions than can be achieved with measurements alone.


2019 ◽  
Vol 11 (12) ◽  
pp. 1408 ◽  
Author(s):  
Amin Beiranvand Pour ◽  
Yongcheol Park ◽  
Laura Crispini ◽  
Andreas Läufer ◽  
Jong Kuk Hong ◽  
...  

Listvenites normally form during hydrothermal/metasomatic alteration of mafic and ultramafic rocks and represent a key indicator for the occurrence of ore mineralizations in orogenic systems. Hydrothermal/metasomatic alteration mineral assemblages are one of the significant indicators for ore mineralizations in the damage zones of major tectonic boundaries, which can be detected using multispectral satellite remote sensing data. In this research, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral remote sensing data were used to detect listvenite occurrences and alteration mineral assemblages in the poorly exposed damage zones of the boundaries between the Wilson, Bowers and Robertson Bay terranes in Northern Victoria Land (NVL), Antarctica. Spectral information for detecting alteration mineral assemblages and listvenites were extracted at pixel and sub-pixel levels using the Principal Component Analysis (PCA)/Independent Component Analysis (ICA) fusion technique, Linear Spectral Unmixing (LSU) and Constrained Energy Minimization (CEM) algorithms. Mineralogical assemblages containing Fe2+, Fe3+, Fe-OH, Al-OH, Mg-OH and CO3 spectral absorption features were detected in the damage zones of the study area by implementing PCA/ICA fusion to visible and near infrared (VNIR) and shortwave infrared (SWIR) bands of ASTER. Silicate lithological groups were mapped and discriminated using PCA/ICA fusion to thermal infrared (TIR) bands of ASTER. Fraction images of prospective alteration minerals, including goethite, hematite, jarosite, biotite, kaolinite, muscovite, antigorite, serpentine, talc, actinolite, chlorite, epidote, calcite, dolomite and siderite and possible zones encompassing listvenite occurrences were produced using LSU and CEM algorithms to ASTER VNIR+SWIR spectral bands. Several potential zones for listvenite occurrences were identified, typically in association with mafic metavolcanic rocks (Glasgow Volcanics) in the Bowers Mountains. Comparison of the remote sensing results with geological investigations in the study area demonstrate invaluable implications of the remote sensing approach for mapping poorly exposed lithological units, detecting possible zones of listvenite occurrences and discriminating subpixel abundance of alteration mineral assemblages in the damage zones of the Wilson-Bowers and Bowers-Robertson Bay terrane boundaries and in intra-Bowers and Wilson terranes fault zones with high fluid flow. The satellite remote sensing approach developed in this research is explicitly pertinent to detecting key alteration mineral indicators for prospecting hydrothermal/metasomatic ore minerals in remote and inaccessible zones situated in other orogenic systems around the world.


2018 ◽  
Vol 48 (6) ◽  
Author(s):  
Du Wen ◽  
Xu Tongyu ◽  
Yu Fenghua ◽  
Chen Chunling

ABSTRACT: The Nitrogen content of rice leaves has a significant effect on growth quality and crop yield. We proposed and demonstrated a non-invasive method for the quantitative inversion of rice nitrogen content based on hyperspectral remote sensing data collected by an unmanned aerial vehicle (UAV). Rice canopy albedo images were acquired by a hyperspectral imager onboard an M600-UAV platform. The radiation calibration method was then used to process these data and the reflectance of canopy leaves was acquired. Experimental validation was conducted using the rice field of Shenyang Agricultural University, which was classified into 4 fertilizer levels: zero nitrogen, low nitrogen, normal nitrogen, and high nitrogen. Gaussian process regression (GPR) was then used to train the inversion algorithm to identify specific spectral bands with the highest contribution. This led to a reduction in noise and a higher inversion accuracy. Principal component analysis (PCA) was also used for dimensionality reduction, thereby reducing redundant information and significantly increasing efficiency. A comparison with ground truth measurements demonstrated that the proposed technique was successful in establishing a nitrogen inversion model, the accuracy of which was quantified using a linear fit (R2=0.8525) and the root mean square error (RMSE=0.9507). These results support the use of GPR and provide a theoretical basis for the inversion of rice nitrogen by UAV hyperspectral remote sensing.


Sign in / Sign up

Export Citation Format

Share Document