scholarly journals Exploring the Dual Interaction of Natural Rhamnolipids with Plant and Fungal Biomimetic Plasma Membranes through Biophysical Studies

2019 ◽  
Vol 20 (5) ◽  
pp. 1009 ◽  
Author(s):  
Noadya Monnier ◽  
Aurélien Furlan ◽  
Sébastien Buchoux ◽  
Magali Deleu ◽  
Manuel Dauchez ◽  
...  

Rhamnolipids (RLs) are potential biocontrol agents for crop culture protection. Their mode of action has been proposed as dual, combining plant protection activation and antifungal activities. The present work focuses on the interaction of natural RLs with plant and fungi membrane models at the molecular scale. Representative models were constructed and the interaction with RLs was studied by Fourier transform infrared (FTIR) and deuterium nuclear magnetic resonance (2H NMR) spectroscopic measurements. Molecular dynamic (MD) simulations were performed to investigate RL insertion in lipid bilayers. Our results showed that the RLs fit into the membrane models and were located near the lipid phosphate group of the phospholipid bilayers, nearby phospholipid glycerol backbones. The results obtained with plant plasma membrane models suggest that the insertion of RLs inside the lipid bilayer did not significantly affect lipid dynamics. Oppositely, a clear fluidity increase of fungi membrane models was observed. This effect was related to the presence and the specific structure of ergosterol. The nature of the phytosterols could also influence the RL effect on plant plasma membrane destabilization. Subtle changes in lipid dynamics could then be linked with plant defense induction and the more drastic effects associated with fungal membrane destabilization.

2008 ◽  
Vol 414 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Marek Dynowski ◽  
Gabriel Schaaf ◽  
Dominique Loque ◽  
Oscar Moran ◽  
Uwe Ludewig

H2O2 is a relatively long-lived reactive oxygen species that signals between cells and organisms. H2O2 signalling in plants is essential for response to stress, defence against pathogens and the regulation of programmed cell death. Although H2O2 diffusion across membranes is often considered as a passive property of lipid bilayers, native membranes represent significant barriers for H2O2. In the present study we addressed the question of whether channels might facilitate H2O2 conduction across plasma membranes. The expression of several plant plasma membrane aquaporins in yeast, including PIP2;1 from Arabidopsis (where PIP is plasma membrane intrinsic protein), enhanced the toxicity of H2O2 and increased the fluorescence of dye-loaded yeast when exposed to H2O2. The sensitivity of aquaporin-expressing yeast to H2O2 was altered by mutations that alter gating and the selectivity of the aquaporins. The conduction of water, H2O2 and urea was compared, using molecular dynamics simulations based on the crystal structure of SoPIP2;1 from spinach. The calculations identify differences in the conduction between the substrates and reveal channel residues critically involved in H2O2 conduction. The results of the calculations on tetramers and monomers are in agreement with the biochemical data. Taken together, the results strongly suggest that plasma membrane aquaporin pores determine the efficiency of H2O2 signalling between cells. Aquaporins are present in most species and their capacity to facilitate the diffusion of H2O2 may be of physiological significance in many organisms and particularly in communication between different species.


2021 ◽  
Author(s):  
Azadeh Alavizargar ◽  
Annegret Eltig ◽  
Roland Wedlich Soeldner ◽  
Andreas Heuer

Clustering of transmembrane proteins underlies a multitude of fundamental biological processes at the plasma membrane such as receptor activation, lateral domain formation and mechanotransduction. The self-association of the respective transmembrane domains (TMD) has also been suggested to be responsible for the micron-scaled patterns seen for integral membrane proteins in the budding yeast plasma membrane (PM). However, the underlying interplay between local lipid composition and TMD identity is still not mechanistically understood. In this work we have used coarse-grained molecular dynamics (MD) simulations as well as microscopy experiments (TIRFM) to analyze the behavior of a representative helical yeast TMD (Slg1) within different lipid environments. Via the simulations we evaluated the effect of acyl chain saturation and the presence of anionic lipids head groups on the association of TMDs via simulations. Our simulations revealed that weak lipid-protein interactions significantly affect the configuration of TMD dimers and the free energy of association. Increased amounts of unsaturated phospholipids strongly reduced helix-helix interaction and the presence of phosphatidylserine (PS) lipids only slightly affected the dimer. Experimentally, the network factor, characterizing the association strength on a mesoscopic level, was measured in the presence and absence of PS lipids. Consistently with the simulations, no significant effect was observed. We also found that formation of TMD dimers in turn increased the order parameter of the surrounding lipids and induced long-range perturbations in lipid organization, shedding new light on the lipid-mediated dimerization of TMDs in complex lipid mixtures.


2016 ◽  
Vol 52 (90) ◽  
pp. 13269-13272 ◽  
Author(s):  
Michael R. Dent ◽  
Ismael López-Duarte ◽  
Callum J. Dickson ◽  
Phoom Chairatana ◽  
Harry L. Anderson ◽  
...  

A thiophene-based molecular rotor was used to probe ordering and viscosity within artificial lipid bilayers and live cell plasma membranes.


2013 ◽  
Vol 450 (3) ◽  
pp. 497-509 ◽  
Author(s):  
Michael Heinze ◽  
Madeleine Herre ◽  
Carolin Massalski ◽  
Isabella Hermann ◽  
Udo Conrad ◽  
...  

The plasma membrane of the California poppy is known to harbour a PLA2 (phospholipase A2) that is associated with the Gα protein which facilitates its activation by a yeast glycoprotein, thereby eliciting the biosynthesis of phytoalexins. To understand the functional architecture of the protein complex, we titrated purified plasma membranes with the Gα protein (native or recombinant) and found that critical amounts of this subunit keep PLA2 in a low-activity state from which it is released either by elicitor plus GTP or by raising the Gα concentration, which probably causes oligomerization of Gα, as supported by FRET (fluorescence resonance energy transfer)-orientated fluorescence imaging and a semiquantitative split-ubiquitin assay. All effects of Gα were blocked by specific antibodies. A low-Gα mutant showed elevated PLA2 activity and lacked the GTP-dependent stimulation by elicitor, but regained this capability after pre-incubation with Gα. The inhibition by Gα and the GTP-dependent stimulation of PLA2 were diminished by inhibitors of peptidylprolyl cis–trans isomerases. A cyclophilin was identified by sequence in the plasma membrane and in immunoprecipitates with anti-Gα antibodies. We conclude that soluble and target-associated Gα interact at the plasma membrane to build complexes of varying architecture and signal amplification. Protein-folding activity is probably required to convey conformational transitions from Gα to its target PLA2.


Biomimetics ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Alessandra Luchini ◽  
Giuseppe Vitiello

Cell membranes are very complex biological systems including a large variety of lipids and proteins. Therefore, they are difficult to extract and directly investigate with biophysical methods. For many decades, the characterization of simpler biomimetic lipid membranes, which contain only a few lipid species, provided important physico-chemical information on the most abundant lipid species in cell membranes. These studies described physical and chemical properties that are most likely similar to those of real cell membranes. Indeed, biomimetic lipid membranes can be easily prepared in the lab and are compatible with multiple biophysical techniques. Lipid phase transitions, the bilayer structure, the impact of cholesterol on the structure and dynamics of lipid bilayers, and the selective recognition of target lipids by proteins, peptides, and drugs are all examples of the detailed information about cell membranes obtained by the investigation of biomimetic lipid membranes. This review focuses specifically on the advances that were achieved during the last decade in the field of biomimetic lipid membranes mimicking the mammalian plasma membrane. In particular, we provide a description of the most common types of lipid membrane models used for biophysical characterization, i.e., lipid membranes in solution and on surfaces, as well as recent examples of their applications for the investigation of protein-lipid and drug-lipid interactions. Altogether, promising directions for future developments of biomimetic lipid membranes are the further implementation of natural lipid mixtures for the development of more biologically relevant lipid membranes, as well as the development of sample preparation protocols that enable the incorporation of membrane proteins in the biomimetic lipid membranes.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Simon Lebecque ◽  
Jean-Marc Crowet ◽  
Laurence Lins ◽  
Benjamin M. Delory ◽  
Patrick du Jardin ◽  
...  

Author(s):  
Estelle Deboever ◽  
Géraldine van Aubel ◽  
Valeria Rondelli ◽  
Alexandros Koutsioumpas ◽  
Marion Mathelie-Guinlet ◽  
...  

Fatty acid hydroperoxides (HPOs) are amphiphilic molecules naturally produced by plants in stressed conditions and involved in plant immunity as signalling molecules. Although some studies report their potential use as exogenous biocontrol agents for plant protection, evaluation of their efficiency in planta is lacking and no information is available about their mechanism of action. In this work, the potential of two HPO forms, 13-HPOD and 13-HPOT, as plant defence elicitors and the underlying mechanism of action are investigated. Both HPOs trigger Arabidopsis innate immunity. They increase plant resistance to the pathogenic fungi Botrytis cinerea and activate early immunity-related defence responses, like ROS production. As our previous study has suggested that HPOs are able to interact with the plant plasma membrane (PPM) lipid fraction, we have further investigated the effects of HPOs on biomimetic PPM structure using complementary biophysics tools. Results show that HPO insertion into PPM impacts its global structure without solubilizing it. 13-HPOT, with an additional double bond compared to 13-HPOD, exerts a higher effect by fluidifying and reducing the thickness of the bilayer. Correlation between biological assays and biophysical analysis suggests that lipid amphiphilic elicitors that directly act on membrane lipids might trigger early plant defence events.


2019 ◽  
Vol 10 ◽  
Author(s):  
Simon Lebecque ◽  
Laurence Lins ◽  
Franck E. Dayan ◽  
Marie-Laure Fauconnier ◽  
Magali Deleu

Author(s):  
J.M. Robinson ◽  
J.M Oliver

Specialized regions of plasma membranes displaying lateral heterogeneity are the focus of this Symposium. Specialized membrane domains are known for certain cell types such as differentiated epithelial cells where lateral heterogeneity in lipids and proteins exists between the apical and basolateral portions of the plasma membrane. Lateral heterogeneity and the presence of microdomains in membranes that are uniform in appearance have been more difficult to establish. Nonetheless a number of studies have provided evidence for membrane microdomains and indicated a functional importance for these structures.This symposium will focus on the use of various imaging modalities and related approaches to define membrane microdomains in a number of cell types. The importance of existing as well as emerging imaging technologies for use in the elucidation of membrane microdomains will be highlighted. The organization of membrane microdomains in terms of dimensions and spatial distribution is of considerable interest and will be addressed in this Symposium.


Sign in / Sign up

Export Citation Format

Share Document