scholarly journals The Triple Amino Acid Substitution TAP-IVS in the EPSPS Gene Confers High Glyphosate Resistance to the Superweed Amaranthus hybridus

2019 ◽  
Vol 20 (10) ◽  
pp. 2396 ◽  
Author(s):  
Maria J. García ◽  
Candelario Palma-Bautista ◽  
Antonia M. Rojano-Delgado ◽  
Enzo Bracamonte ◽  
João Portugal ◽  
...  

The introduction of glyphosate-resistant (GR) crops revolutionized weed management; however, the improper use of this technology has selected for a wide range of weeds resistant to glyphosate, referred to as superweeds. We characterized the high glyphosate resistance level of an Amaranthus hybridus population (GRH)—a superweed collected in a GR-soybean field from Cordoba, Argentina—as well as the resistance mechanisms that govern it in comparison to a susceptible population (GSH). The GRH population was 100.6 times more resistant than the GSH population. Reduced absorption and metabolism of glyphosate, as well as gene duplication of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) or its overexpression did not contribute to this resistance. However, GSH plants translocated at least 10% more 14C-glyphosate to the rest of the plant and roots than GRH plants at 9 h after treatment. In addition, a novel triple amino acid substitution from TAP (wild type, GSH) to IVS (triple mutant, GRH) was identified in the EPSPS gene of the GRH. The nucleotide substitutions consisted of ATA102, GTC103 and TCA106 instead of ACA102, GCG103, and CCA106, respectively. The hydrogen bond distances between Gly-101 and Arg-105 positions increased from 2.89 Å (wild type) to 2.93 Å (triple-mutant) according to the EPSPS structural modeling. These results support that the high level of glyphosate resistance of the GRH A. hybridus population was mainly governed by the triple mutation TAP-IVS found of the EPSPS target site, but the impaired translocation of herbicide also contributed in this resistance.

2006 ◽  
Vol 80 (5) ◽  
pp. 2396-2404 ◽  
Author(s):  
Wen Jun Liu ◽  
Xiang Ju Wang ◽  
David C. Clark ◽  
Mario Lobigs ◽  
Roy A. Hall ◽  
...  

ABSTRACT Alpha/beta interferons (IFN-α/β) are key mediators of the innate immune response against viral infection. The ability of viruses to circumvent IFN-α/β responses plays a crucial role in determining the outcome of infection. In a previous study using subgenomic replicons of the Kunjin subtype of West Nile virus (WNVKUN), we demonstrated that the nonstructural protein NS2A is a major inhibitor of IFN-β promoter-driven transcription and that a single amino acid substitution in NS2A (Ala30 to Pro [A30P]) dramatically reduced its inhibitory effect (W. J. Liu, H. B. Chen, X. J. Wang, H. Huang, and A. A. Khromykh, J. Virol. 78:12225-12235). Here we show that incorporation of the A30P mutation into the WNVKUN genome results in a mutant virus which elicits more rapid induction and higher levels of synthesis of IFN-α/β in infected human A549 cells than that detected following wild-type WNVKUN infection. Consequently, replication of the WNVKUNNS2A/A30P mutant virus in these cells known to be high producers of IFN-α/β was abortive. In contrast, both the mutant and the wild-type WNVKUN produced similar-size plaques and replicated with similar efficiency in BHK cells which are known to be deficient in IFN-α/β production. The mutant virus was highly attenuated in neuroinvasiveness and also attenuated in neurovirulence in 3-week-old mice. Surprisingly, the mutant virus was also partially attenuated in IFN-α/βγ receptor knockout mice, suggesting that the A30P mutation may also play a role in more efficient activation of other antiviral pathways in addition to the IFN response. Immunization of wild-type mice with the mutant virus resulted in induction of an antibody response of similar magnitude to that observed in mice immunized with wild-type WNVKUN and gave complete protection against challenge with a lethal dose of the highly virulent New York 99 strain of WNV. The results confirm and extend our previous original findings on the role of the flavivirus NS2A protein in inhibition of a host antiviral response and demonstrate that the targeted disabling of a viral mechanism for evading the IFN response can be applied to the development of live attenuated flavivirus vaccine candidates.


Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 377 ◽  
Author(s):  
José G. Vázquez-García ◽  
Sajedeh Golmohammadzadeh ◽  
Candelario Palma-Bautista ◽  
Antonia M. Rojano-Delgado ◽  
José A. Domínguez-Valenzuela ◽  
...  

Chloris distichophylla, suspected of glyphosate resistance (GR), was collected from areas of soybean cultivation in Rio Grande do Sul, Brazil. A comparison was made with a susceptible population (GS) to evaluate the resistance level, mechanisms involved, and control alternatives. Glyphosate doses required to reduce the dry weight (GR50) or cause a mortality rate of 50% (LD50) were around 5.1–3 times greater in the GR population than in the GS population. The shikimic acid accumulation was around 6.2-fold greater in GS plants than in GR plants. No metabolized glyphosate was found in either GR or GS plants. Both populations did not differ in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) basal activity or in vitro inhibition of EPSPS activity by glyphosate (I50). The maximum glyphosate absorption was observed at 96 hours after treatment (HAT), which was twofold higher in the GS plants than in the GR plants. This confirms the first case of glyphosate resistance in C. distichophylla. In addition, at 96 HAT, the GS plants translocated more 14C-glyphosate than the GR ones. The best options for the chemical control of both C. distichophylla populations were clethodim, quizalofop, paraquat, glufosinate, tembotrione, diuron, and atrazine. The first case of glyphosate resistance in C. distichophylla was due to impaired uptake and translocation. Chemical control using multiple herbicides with different modes of action (MOA) could be a tool used for integrated weed management (IWM) programs.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4178-4187 ◽  
Author(s):  
O. Peyruchaud ◽  
A.T. Nurden ◽  
S. Milet ◽  
L. Macchi ◽  
A. Pannochia ◽  
...  

Abstract The integrin IIbβ3 mediates platelet aggregation through its fibrinogen and adhesive protein-binding properties. Particular interest concerns the role of the cytoplasmic domains of IIb and β3. We now report the molecular analysis of IIbβ3 from a patient with a Glanzmann’s thrombasthenia-like syndrome for whom the principal characteristics are an approximate 50% total platelet content of IIbβ3 but with a much lower proportion in the surface pool (Hardisty et al, Blood 80:696, 1992). Polymerase chain reaction (PCR) single-strand conformational polymorphism and DNA sequencing showed a heterozygous mutation giving rise to amino acid substitution R995 to Q in the GFFKR sequence of the cytoplasmic domain of IIb. Reverse transcriptase-PCR and polymorphism analysis only detected mRNA for the mutated allele of the IIb gene and a single allele of the β3 gene in his platelets, suggesting other unidentified defects. Site-directed mutagenesis followed by transient expression of the mutated IIb together with wild-type β3 in Cos-7 cells resulted in a markedly decreased expression of the complex at the cell surface when compared with cells transfected with wild-type IIb and β3. Flow cytometry with PAC-1 and a stable Chinese hamster ovary–transfected cell line showed that the mutated receptor was not locked into a high activation state, although it became so in the presence of the activating antibody, anti-LIBS6. This is the first reported natural mutation in the highly conserved GFFKR sequence of the IIb cytoplasmic domain.


2001 ◽  
Vol 75 (14) ◽  
pp. 6303-6309 ◽  
Author(s):  
Marintha L. Heil ◽  
Alison Albee ◽  
James H. Strauss ◽  
Richard J. Kuhn

ABSTRACT Passage of Ross River virus strain NB5092 in avian cells has been previously shown to select for virus variants that have enhanced replication in these cells. Sequencing of these variants identified two independent sites that might be responsible for the phenotype. We now demonstrate, using a molecular cDNA clone of the wild-type T48 strain, that an amino acid substitution at residue 218 in the E2 glycoprotein can account for the phenotype. Substitutions that replaced the wild-type asparagine with basic residues had enhanced replication in avian cells while acidic or neutral residues had little or no observable effect. Ross River virus mutants that had increased replication in avian cells also grew better in BHK cells than the wild-type virus, whereas the remaining mutants were unaffected in growth. Replication in both BHK and avian cells of Ross River virus mutants N218K and N218R was inhibited by the presence of heparin or by the pretreatment of the cells with heparinase. Binding of the mutants, but not of the wild type, to a heparin-Sepharose column produced binding comparable to that of Sindbis virus, which has previously been shown to bind heparin. Replication of these mutants was also adversely affected when they were grown in a CHO cell line that was deficient in heparan sulfate production. These results demonstrate that amino acid 218 of the E2 glycoprotein can be modified to create an heparan sulfate binding site and this modification expands the host range of Ross River virus in cultured cells to cells of avian origin.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4178-4187 ◽  
Author(s):  
O. Peyruchaud ◽  
A.T. Nurden ◽  
S. Milet ◽  
L. Macchi ◽  
A. Pannochia ◽  
...  

The integrin IIbβ3 mediates platelet aggregation through its fibrinogen and adhesive protein-binding properties. Particular interest concerns the role of the cytoplasmic domains of IIb and β3. We now report the molecular analysis of IIbβ3 from a patient with a Glanzmann’s thrombasthenia-like syndrome for whom the principal characteristics are an approximate 50% total platelet content of IIbβ3 but with a much lower proportion in the surface pool (Hardisty et al, Blood 80:696, 1992). Polymerase chain reaction (PCR) single-strand conformational polymorphism and DNA sequencing showed a heterozygous mutation giving rise to amino acid substitution R995 to Q in the GFFKR sequence of the cytoplasmic domain of IIb. Reverse transcriptase-PCR and polymorphism analysis only detected mRNA for the mutated allele of the IIb gene and a single allele of the β3 gene in his platelets, suggesting other unidentified defects. Site-directed mutagenesis followed by transient expression of the mutated IIb together with wild-type β3 in Cos-7 cells resulted in a markedly decreased expression of the complex at the cell surface when compared with cells transfected with wild-type IIb and β3. Flow cytometry with PAC-1 and a stable Chinese hamster ovary–transfected cell line showed that the mutated receptor was not locked into a high activation state, although it became so in the presence of the activating antibody, anti-LIBS6. This is the first reported natural mutation in the highly conserved GFFKR sequence of the IIb cytoplasmic domain.


Weed Science ◽  
2014 ◽  
Vol 62 (2) ◽  
pp. 258-266 ◽  
Author(s):  
Miki Okada ◽  
Marie Jasieniuk

Inheritance of glyphosate resistance was investigated in hairy fleabane populations from California as part of providing the information needed to predict and manage resistance and to gain insight into resistance mechanism (or mechanisms) present in the populations. Three glyphosate-resistant individuals grown from seed collected from distinct sites near Fresno, CA, were crossed to individuals from the same susceptible population to create reciprocal F1populations. A single individual from each of the F1populations was used to create a backcross population with a susceptible maternal parent, and an F2population. Based on dose response analyses, reciprocal F1populations were not statistically different from each other, more similar to the resistant parent, and statistically different from the susceptible parent, consistent with nuclear control of the trait and dominance to incomplete dominance of resistance over susceptibility in all three crosses. Glyphosate resistance in two of the three crosses segregated in the backcross and the F2populations as a single-locus trait. In the remaining cross, the resistant parent had approximately half the resistance level as the other two resistant parents, and the segregation of glyphosate resistance in backcross and F2populations conformed to a two-locus model with resistance alleles acting additively and at least two copies of the allele required for expression of resistance. This two-locus model of the segregation of glyphosate resistance has not been reported previously. Variation in the pattern of inheritance and the level of resistance indicate that multiple resistance mechanisms may be present in hairy fleabane populations in California.


2001 ◽  
Vol 82 (11) ◽  
pp. 2767-2776 ◽  
Author(s):  
Chaysavanh Manichanh ◽  
Camille Olivier-Aubron ◽  
Jean-Pierre Lagarde ◽  
Jean-Thierry Aubin ◽  
Phillipe Bossi ◽  
...  

After serial passage in the presence of increasing concentrations of ganciclovir (GCV) in vitro, a human herpesvirus-6 (HHV-6) mutant exhibiting a decreased sensitivity to the drug was isolated. Analysis of drug susceptibility showed that the IC50 of this mutant was 24-, 52- and 3-fold higher than that of the wild-type (wt) IC50 in the case of GCV, cidofovir and foscarnet, respectively. Genotypic analysis showed two single nucleotide changes as compared to the wild-type: an A→G substitution of the U69 protein kinase (PK) gene resulted in an M318V amino acid substitution and the other change, located in the C-terminal part of the U38 gene, resulted in an A961V amino acid substitution within the DNA polymerase. The M318V change was located within the consensus sequence DISPMN of the putative catalytic domain VI of the PK. This change was homologous to the M460V and M460I changes that had been reported previously within the consensus sequence DITPMN of the human cytomegalovirus (HCMV) UL97 PK and associated with the resistance of HCMV to GCV. The M318V change was also detected by PCR in HHV-6-infected PBMCs from an AIDS patient who had been treated with GCV for a long period of time and exhibited a clinically GCV-resistant HCMV infection. These findings provide strong circumstantial evidence that the M318V change of the PK gene is associated with resistance to GCV and raise the question of cross resistance to this drug among different betaherpesviruses.


2000 ◽  
Vol 20 (24) ◽  
pp. 9409-9422 ◽  
Author(s):  
Adam J. Shaywitz ◽  
Simon L. Dove ◽  
Jon M. Kornhauser ◽  
Ann Hochschild ◽  
Michael E. Greenberg

ABSTRACT The activity of the transcription factor CREB is regulated by extracellular stimuli that result in its phosphorylation at a critical serine residue, Ser133. Phosphorylation of Ser133 is believed to promote CREB-dependent transcription by allowing CREB to interact with the transcriptional coactivator CREB-binding protein (CBP). Previous studies have established that the domain encompassing Ser133 on CREB, known as the kinase-inducible domain (KID), interacts specifically with a short domain in CBP termed the KIX domain and that this interaction depends on the phosphorylation of Ser133. In this study, we adapted a recently described Escherichia coli-based two-hybrid system for the examination of phosphorylation-dependent protein-protein interactions, and we used this system to study the kinase-induced interaction between the KID and the KIX domain. We identified residues of the KID and the KIX domain that are critical for their interaction as well as two pairs of oppositely charged residues that apparently interact at the KID-KIX interface. We then isolated a mutant form of the KIX domain that interacts more tightly with wild-type and mutant forms of the KID than does the wild-type KIX domain. We show that in the context of full-length CBP, the corresponding amino acid substitution resulted in an enhanced ability of CBP to stimulate CREB-dependent transcription in mammalian cells. Conversely, an amino acid substitution in the KIX domain that weakens its interaction with the KID resulted in a decreased ability of full-length CBP to stimulate CREB-dependent transcription. These findings demonstrate that the magnitude of CREB-dependent transcription in mammalian cells depends on the strength of the KID-KIX interaction and suggest that the level of transcription induced by coactivator-dependent transcriptional activators can be specified by the strength of the activator-coactivator interaction.


2011 ◽  
Vol 55 (8) ◽  
pp. 3661-3667 ◽  
Author(s):  
Hyun Kim ◽  
Chie Nakajima ◽  
Kazumasa Yokoyama ◽  
Zeaur Rahim ◽  
Youn Uck Kim ◽  
...  

ABSTRACTAmino acid substitutions conferring resistance to quinolones inMycobacterium tuberculosishave generally been found within the quinolone resistance-determining regions (QRDRs) in the A subunit of DNA gyrase (GyrA) rather than the B subunit of DNA gyrase (GyrB). To clarify the contribution of an amino acid substitution, E540V, in GyrB to quinolone resistance inM. tuberculosis, we expressed recombinant DNA gyrases inEscherichia coliand characterized themin vitro. Wild-type and GyrB-E540V DNA gyrases were reconstitutedin vitroby mixing recombinant GyrA and GyrB. Correlation between the amino acid substitution and quinolone resistance was assessed by the ATP-dependent DNA supercoiling assay, quinolone-inhibited supercoiling assay, and DNA cleavage assay. The 50% inhibitory concentrations of eight quinolones against DNA gyrases bearing the E540V amino acid substitution in GyrB were 2.5- to 36-fold higher than those against the wild-type enzyme. Similarly, the 25% maximum DNA cleavage concentrations were 1.5- to 14-fold higher for the E540V gyrase than for the wild-type enzyme. We further demonstrated that the E540V amino acid substitution influenced the interaction between DNA gyrase and the substituent(s) at R-7, R-8, or both in quinolone structures. This is the first detailed study of the contribution of the E540V amino acid substitution in GyrB to quinolone resistance inM. tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document