scholarly journals Engineering of Nanobodies Recognizing the Human Chemokine Receptor CCR7

2019 ◽  
Vol 20 (10) ◽  
pp. 2597 ◽  
Author(s):  
Barbara D. Jakobs ◽  
Lisa Spannagel ◽  
Vladimir Purvanov ◽  
Edith Uetz-von Allmen ◽  
Christoph Matti ◽  
...  

The chemokine receptor CCR7 plays a pivotal role in health and disease. In particular, CCR7 controls homing of antigen-bearing dendritic cells and T cells to lymph nodes, where adaptive immune responses are initiated. However, CCR7 also guides T cells to inflamed synovium and thereby contributes to rheumatoid arthritis and promotes cancer cell migration and metastasis formation. Nanobodies have recently emerged as versatile tools to study G-protein-coupled receptor functions and are being tested in diagnostics and therapeutics. In this study, we designed a strategy to engineer novel nanobodies recognizing human CCR7. We generated a nanobody library based on a solved crystal structure of the nanobody Nb80 recognizing the β2-adrenergic receptor (β2AR) and by specifically randomizing two segments within complementarity determining region 1 (CDR1) and CDR3 of Nb80 known to interact with β2AR. We fused the nanobody library to one half of split-YFP in order to identify individual nanobody clones interacting with CCR7 fused to the other half of split-YFP using bimolecular fluorescence complementation. We present three novel nanobodies, termed Nb1, Nb5, and Nb38, that recognize human CCR7 without interfering with G-protein-coupling and downstream signaling. Moreover, we were able to follow CCR7 trafficking upon CCL19 triggering using Nb1, Nb5, and Nb38.

Author(s):  
Zhehua Shao ◽  
Qingya Shen ◽  
Bingpeng Yao ◽  
Chunyou Mao ◽  
Li-Nan Chen ◽  
...  

AbstractBiased signaling of G protein-coupled receptors describes an ability of different ligands that preferentially activate an alternative downstream signaling pathway. In this work, we identified and characterized different N-terminal truncations of endogenous chemokine CCL15 as balanced or biased agonists targeting CCR1, and presented three cryogenic-electron microscopy structures of the CCR1–Gi complex in the ligand-free form or bound to different CCL15 truncations with a resolution of 2.6–2.9 Å, illustrating the structural basis of natural biased signaling that initiates an inflammation response. Complemented with pharmacological and computational studies, these structures revealed it was the conformational change of Tyr291 (Y2917.43) in CCR1 that triggered its polar network rearrangement in the orthosteric binding pocket and allosterically regulated the activation of β-arrestin signaling. Our structure of CCL15-bound CCR1 also exhibited a critical site for ligand binding distinct from many other chemokine–receptor complexes, providing new insights into the mode of chemokine recognition.


2009 ◽  
Vol 30 (1) ◽  
pp. 78-90 ◽  
Author(s):  
Yuhui Jiang ◽  
Xiaoduo Xie ◽  
Yixuan Zhang ◽  
Xiaolin Luo ◽  
Xiao Wang ◽  
...  

ABSTRACT Upon ligand binding, G-protein-coupled receptors (GPCRs) impart the signal to heterotrimeric G proteins composed of α, β, and γ subunits, leading to dissociation of the Gα subunit from the Gβγ subunit. While the Gα subunit is imperative for downstream signaling, the Gβγ subunit, in its own right, mediates a variety of cellular responses such as GPCR desensitization via recruiting GRK to the plasma membrane and AKT stimulation. Here we report a mode of spatial regulation of the Gβγ subunit through alteration in subcellular compartmentation. RKTG (Raf kinase trapping to Golgi apparatus) is a newly characterized membrane protein specifically localized at the Golgi apparatus. The N terminus of RKTG interacts with Gβ and tethers Gβγ to the Golgi apparatus. Overexpression of RKTG impedes the interaction of Gβγ with GRK2, abrogates the ligand-induced change of subcellular distribution of GRK2, reduces isoproterenol-stimulated phosphorylation of the β2-adrenergic receptor (β2AR), and alters β2AR desensitization. In addition, RKTG inhibits Gβγ- and ligand-mediated AKT phosphorylation that is enhanced in cells with downregulation of RKTG. Silencing of RKTG also alters GRK2 internalization and compromises ligand-induced Gβ translocation to the Golgi apparatus. Taken together, our results reveal that RKTG can modulate GPCR signaling through sequestering Gβγ to the Golgi apparatus and thereby attenuating the functions of Gβγ.


Author(s):  
Gabriele Stephan ◽  
Niklas Ravn-Boess ◽  
Dimitris G Placantonakis

Abstract Members of the adhesion family of G protein-coupled receptors (GPCRs) have received attention for their roles in health and disease, including cancer. Over the past decade, several members of the family have been implicated in the pathogenesis of glioblastoma. Here, we discuss the basic biology of adhesion GPCRs and review in detail specific members of the receptor family with known functions in glioblastoma. Finally, we discuss the potential use of adhesion GPCRs as novel treatment targets in neuro-oncology.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 75
Author(s):  
Marta Laganà ◽  
Géraldine Schlecht-Louf ◽  
Françoise Bachelerie

Although G protein-coupled receptor kinases (GRKs) have long been known to regulate G protein-coupled receptor (GPCR) desensitization, their more recently characterized functions as scaffolds and signalling adapters underscore that this small family of proteins governs a larger array of physiological functions than originally suspected. This review explores how GRKs contribute to the complex signalling networks involved in the migration of immune cells along chemokine gradients sensed by cell surface GPCRs. We outline emerging evidence indicating that the coordinated docking of several GRKs on an active chemokine receptor determines a specific receptor phosphorylation barcode that will translate into distinct signalling and migration outcomes. The guidance cues for neutrophil migration are emphasized based on several alterations affecting GRKs or GPCRs reported to be involved in pathological conditions.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 672
Author(s):  
Richard A. Pepermans ◽  
Geetanjali Sharma ◽  
Eric R. Prossnitz

Estrogen is involved in numerous physiological and pathophysiological systems. Its role in driving estrogen receptor-expressing breast cancers is well established, but it also has important roles in a number of other cancers, acting both on tumor cells directly as well as in the function of multiple cells of the tumor microenvironment, including fibroblasts, immune cells, and adipocytes, which can greatly impact carcinogenesis. One of its receptors, the G protein-coupled estrogen receptor (GPER), has gained much interest over the last decade in both health and disease. Increasing evidence shows that GPER contributes to clinically observed endocrine therapy resistance in breast cancer while also playing a complex role in a number of other cancers. Recent discoveries regarding the targeting of GPER in combination with immune checkpoint inhibition, particularly in melanoma, have led to the initiation of the first Phase I clinical trial for the GPER-selective agonist G-1. Furthermore, its functions in metabolism and corresponding pathophysiological states, such as obesity and diabetes, are becoming more evident and suggest additional therapeutic value in targeting GPER for both cancer and other diseases. Here, we highlight the roles of GPER in several cancers, as well as in metabolism and immune regulation, and discuss the therapeutic value of targeting this estrogen receptor as a potential treatment for cancer as well as contributing metabolic and inflammatory diseases and conditions.


2013 ◽  
Vol 69 (11) ◽  
pp. 2287-2292 ◽  
Author(s):  
Andrew C. Kruse ◽  
Aashish Manglik ◽  
Brian K. Kobilka ◽  
William I. Weis

G protein-coupled receptors (GPCRs) are a large class of integral membrane proteins involved in regulating virtually every aspect of human physiology. Despite their profound importance in human health and disease, structural information regarding GPCRs has been extremely limited until recently. With the advent of a variety of new biochemical and crystallographic techniques, the structural biology of GPCRs has advanced rapidly, offering key molecular insights into GPCR activation and signal transduction. To date, almost all GPCR structures have been solved using molecular-replacement techniques. Here, the unique aspects of molecular replacement as applied to individual GPCRs and to signaling complexes of these important proteins are discussed.


Sign in / Sign up

Export Citation Format

Share Document