scholarly journals Regulation of G-Protein Signaling by RKTG via Sequestration of the Gβγ Subunit to the Golgi Apparatus

2009 ◽  
Vol 30 (1) ◽  
pp. 78-90 ◽  
Author(s):  
Yuhui Jiang ◽  
Xiaoduo Xie ◽  
Yixuan Zhang ◽  
Xiaolin Luo ◽  
Xiao Wang ◽  
...  

ABSTRACT Upon ligand binding, G-protein-coupled receptors (GPCRs) impart the signal to heterotrimeric G proteins composed of α, β, and γ subunits, leading to dissociation of the Gα subunit from the Gβγ subunit. While the Gα subunit is imperative for downstream signaling, the Gβγ subunit, in its own right, mediates a variety of cellular responses such as GPCR desensitization via recruiting GRK to the plasma membrane and AKT stimulation. Here we report a mode of spatial regulation of the Gβγ subunit through alteration in subcellular compartmentation. RKTG (Raf kinase trapping to Golgi apparatus) is a newly characterized membrane protein specifically localized at the Golgi apparatus. The N terminus of RKTG interacts with Gβ and tethers Gβγ to the Golgi apparatus. Overexpression of RKTG impedes the interaction of Gβγ with GRK2, abrogates the ligand-induced change of subcellular distribution of GRK2, reduces isoproterenol-stimulated phosphorylation of the β2-adrenergic receptor (β2AR), and alters β2AR desensitization. In addition, RKTG inhibits Gβγ- and ligand-mediated AKT phosphorylation that is enhanced in cells with downregulation of RKTG. Silencing of RKTG also alters GRK2 internalization and compromises ligand-induced Gβ translocation to the Golgi apparatus. Taken together, our results reveal that RKTG can modulate GPCR signaling through sequestering Gβγ to the Golgi apparatus and thereby attenuating the functions of Gβγ.

2021 ◽  
Author(s):  
William C Simke ◽  
Andrew J Hart ◽  
Cory P Johnson ◽  
Sari Mayhue ◽  
P Lucas Craig ◽  
...  

Yeast use a G-protein coupled receptor (GPCR) signaling pathway to detect mating pheromone, arrest in G1, and direct polarized growth towards the potential mating partner. The primary negative regulator of this pathway is the regulator of G-protein signaling (RGS), Sst2, which induces Gα GTPase activity and subsequent inactivation of all downstream signaling. MAPK phosphorylates the RGS in response to pheromone, but the role of this modification is unknown. We set out to examine the role of RGS phosphorylation during the pheromone response. We found that phosphorylation of the RGS peaks early in the pheromone response and diminishes RGS localization to the polarization site and focuses Gα/MAPK complexes there. At later time points, RGS is predominantly unphosphorylated, which promotes RGS localization to the polar cap and broadens the distribution of Gα/MAPK complexes relative to the Cdc42 polarity machinery. Surprisingly, we found that phosphorylation of the RGS is required for the completion of cytokinesis prior to pheromone induced growth. The completion of cytokinesis in the presence of pheromone is promoted by the formin Bnr1 and the kelch-repeat protein, Kel1, both proteins previously found to interact with the RGS.


2019 ◽  
Vol 20 (10) ◽  
pp. 2597 ◽  
Author(s):  
Barbara D. Jakobs ◽  
Lisa Spannagel ◽  
Vladimir Purvanov ◽  
Edith Uetz-von Allmen ◽  
Christoph Matti ◽  
...  

The chemokine receptor CCR7 plays a pivotal role in health and disease. In particular, CCR7 controls homing of antigen-bearing dendritic cells and T cells to lymph nodes, where adaptive immune responses are initiated. However, CCR7 also guides T cells to inflamed synovium and thereby contributes to rheumatoid arthritis and promotes cancer cell migration and metastasis formation. Nanobodies have recently emerged as versatile tools to study G-protein-coupled receptor functions and are being tested in diagnostics and therapeutics. In this study, we designed a strategy to engineer novel nanobodies recognizing human CCR7. We generated a nanobody library based on a solved crystal structure of the nanobody Nb80 recognizing the β2-adrenergic receptor (β2AR) and by specifically randomizing two segments within complementarity determining region 1 (CDR1) and CDR3 of Nb80 known to interact with β2AR. We fused the nanobody library to one half of split-YFP in order to identify individual nanobody clones interacting with CCR7 fused to the other half of split-YFP using bimolecular fluorescence complementation. We present three novel nanobodies, termed Nb1, Nb5, and Nb38, that recognize human CCR7 without interfering with G-protein-coupling and downstream signaling. Moreover, we were able to follow CCR7 trafficking upon CCL19 triggering using Nb1, Nb5, and Nb38.


2018 ◽  
Vol 11 (549) ◽  
pp. eaat7650 ◽  
Author(s):  
Louis M. Luttrell ◽  
Jialu Wang ◽  
Bianca Plouffe ◽  
Jeffrey S. Smith ◽  
Lama Yamani ◽  
...  

G protein–coupled receptors (GPCRs) use diverse mechanisms to regulate the mitogen-activated protein kinases ERK1/2. β-Arrestins (βArr1/2) are ubiquitous inhibitors of G protein signaling, promoting GPCR desensitization and internalization and serving as scaffolds for ERK1/2 activation. Studies using CRISPR/Cas9 to delete βArr1/2 and G proteins have cast doubt on the role of β-arrestins in activating specific pools of ERK1/2. We compared the effects of siRNA-mediated knockdown of βArr1/2 and reconstitution with βArr1/2 in three different parental and CRISPR-derived βArr1/2 knockout HEK293 cell pairs to assess the effect of βArr1/2 deletion on ERK1/2 activation by four Gs-coupled GPCRs. In all parental lines with all receptors, ERK1/2 stimulation was reduced by siRNAs specific for βArr2 or βArr1/2. In contrast, variable effects were observed with CRISPR-derived cell lines both between different lines and with activation of different receptors. For β2adrenergic receptors (β2ARs) and β1ARs, βArr1/2 deletion increased, decreased, or had no effect on isoproterenol-stimulated ERK1/2 activation in different CRISPR clones. ERK1/2 activation by the vasopressin V2and follicle-stimulating hormone receptors was reduced in these cells but was enhanced by reconstitution with βArr1/2. Loss of desensitization and receptor internalization in CRISPR βArr1/2 knockout cells caused β2AR-mediated stimulation of ERK1/2 to become more dependent on G proteins, which was reversed by reintroducing βArr1/2. These data suggest that βArr1/2 function as a regulatory hub, determining the balance between mechanistically different pathways that result in activation of ERK1/2, and caution against extrapolating results obtained from βArr1/2- or G protein–deleted cells to GPCR behavior in native systems.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 75
Author(s):  
Marta Laganà ◽  
Géraldine Schlecht-Louf ◽  
Françoise Bachelerie

Although G protein-coupled receptor kinases (GRKs) have long been known to regulate G protein-coupled receptor (GPCR) desensitization, their more recently characterized functions as scaffolds and signalling adapters underscore that this small family of proteins governs a larger array of physiological functions than originally suspected. This review explores how GRKs contribute to the complex signalling networks involved in the migration of immune cells along chemokine gradients sensed by cell surface GPCRs. We outline emerging evidence indicating that the coordinated docking of several GRKs on an active chemokine receptor determines a specific receptor phosphorylation barcode that will translate into distinct signalling and migration outcomes. The guidance cues for neutrophil migration are emphasized based on several alterations affecting GRKs or GPCRs reported to be involved in pathological conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aya Mikdache ◽  
Marie-José Boueid ◽  
Lorijn van der Spek ◽  
Emilie Lesport ◽  
Brigitte Delespierre ◽  
...  

AbstractThe Regulator of G protein signaling 4 (Rgs4) is a member of the RGS proteins superfamily that modulates the activity of G-protein coupled receptors. It is mainly expressed in the nervous system and is linked to several neuronal signaling pathways; however, its role in neural development in vivo remains inconclusive. Here, we generated and characterized a rgs4 loss of function model (MZrgs4) in zebrafish. MZrgs4 embryos showed motility defects and presented reduced head and eye sizes, reflecting defective motoneurons axon outgrowth and a significant decrease in the number of neurons in the central and peripheral nervous system. Forcing the expression of Rgs4 specifically within motoneurons rescued their early defective outgrowth in MZrgs4 embryos, indicating an autonomous role for Rgs4 in motoneurons. We also analyzed the role of Akt, Erk and mechanistic target of rapamycin (mTOR) signaling cascades and showed a requirement for these pathways in motoneurons axon outgrowth and neuronal development. Drawing on pharmacological and rescue experiments in MZrgs4, we provide evidence that Rgs4 facilitates signaling mediated by Akt, Erk and mTOR in order to drive axon outgrowth in motoneurons and regulate neuronal numbers.


2011 ◽  
Vol 286 (22) ◽  
pp. 19259-19269 ◽  
Author(s):  
Il-Ha Lee ◽  
Sung-Hee Song ◽  
Craig R. Campbell ◽  
Sharad Kumar ◽  
David I. Cook ◽  
...  

The G protein-coupled receptor kinase (GRK2) belongs to a family of protein kinases that phosphorylates agonist-activated G protein-coupled receptors, leading to G protein-receptor uncoupling and termination of G protein signaling. GRK2 also contains a regulator of G protein signaling homology (RH) domain, which selectively interacts with α-subunits of the Gq/11 family that are released during G protein-coupled receptor activation. We have previously reported that kinase activity of GRK2 up-regulates activity of the epithelial sodium channel (ENaC) in a Na+ absorptive epithelium by blocking Nedd4-2-dependent inhibition of ENaC. In the present study, we report that GRK2 also regulates ENaC by a mechanism that does not depend on its kinase activity. We show that a wild-type GRK2 (wtGRK2) and a kinase-dead GRK2 mutant (K220RGRK2), but not a GRK2 mutant that lacks the C-terminal RH domain (ΔRH-GRK2) or a GRK2 mutant that cannot interact with Gαq/11/14 (D110AGRK2), increase activity of ENaC. GRK2 up-regulates the basal activity of the channel as a consequence of its RH domain binding the α-subunits of Gq/11. We further found that expression of constitutively active Gαq/11 mutants significantly inhibits activity of ENaC. Conversely, co-expression of siRNA against Gαq/11 increases ENaC activity. The effect of Gαq on ENaC activity is not due to change in ENaC membrane expression and is independent of Nedd4-2. These findings reveal a novel mechanism by which GRK2 and Gq/11 α-subunits regulate the activity ENaC.


2012 ◽  
Vol 59 (4) ◽  
Author(s):  
Dorota Latek ◽  
Anna Modzelewska ◽  
Bartosz Trzaskowski ◽  
Krzysztof Palczewski ◽  
Sławomir Filipek

The years 2000 and 2007 witnessed milestones in current understanding of G protein-coupled receptor (GPCR) structural biology. In 2000 the first GPCR, bovine rhodopsin, was crystallized and the structure was solved, while in 2007 the structure of β(2)-adrenergic receptor, the first GPCR with diffusible ligands, was determined owing to advances in microcrystallization and an insertion of the fast-folding lysozyme into the receptor. In parallel with those crystallographic studies, the biological and biochemical characterization of GPCRs has advanced considerably because those receptors are molecular targets for many of currently used drugs. Therefore, the mechanisms of activation and signal transduction to the cell interior deduced from known GPCRs structures are of the highest importance for drug discovery. These proteins are the most diversified membrane receptors encoded by hundreds of genes in our genome. They participate in processes responsible for vision, smell, taste and neuronal transmission in response to photons or binding of ions, hormones, peptides, chemokines and other factors. Although the GPCRs share a common seven-transmembrane α-helical bundle structure their binding sites can accommodate thousands of different ligands. The ligands, including agonists, antagonists or inverse agonists change the structure of the receptor. With bound agonists they can form a complex with a suitable G protein, be phosphorylated by kinases or bind arrestin. The discovered signaling cascades invoked by arrestin independently of G proteins makes the GPCR activating scheme more complex such that a ligand acting as an antagonist for G protein signaling can also act as an agonist in arrestin-dependent signaling. Additionally, the existence of multiple ligand-dependent partial activation states as well as dimerization of GPCRs result in a 'microprocessor-like' action of these receptors rather than an 'on-off' switch as was commonly believed only a decade ago.


Sign in / Sign up

Export Citation Format

Share Document