scholarly journals Angiotensin II Influences Pre-mRNA Splicing Regulation by Enhancing RBM20 Transcription Through Activation of the MAPK/ELK1 Signaling Pathway

2019 ◽  
Vol 20 (20) ◽  
pp. 5059 ◽  
Author(s):  
Hanfang Cai ◽  
Chaoqun Zhu ◽  
Zhilong Chen ◽  
Rexiati Maimaiti ◽  
Mingming Sun ◽  
...  

RNA binding motif 20 (RBM20) is a key regulator of pre-mRNA splicing of titin and other genes that are associated with cardiac diseases. Hormones, like insulin, triiodothyronine (T3), and angiotensin II (Ang II), can regulate gene-splicing through RBM20, but the detailed mechanism remains unclear. This study was aimed at investigating the signaling mechanism by which hormones regulate pre-mRNA splicing through RBM20. We first examined the role of RBM20 in Z-, I-, and M-band titin splicing at different ages in wild type (WT) and RBM20 knockout (KO) rats using RT-PCR; we found that RBM20 is the predominant regulator of I-band titin splicing at all ages. Then we treated rats with propylthiouracil (PTU), T3, streptozotocin (STZ), and Ang II and evaluated the impact of these hormones on the splicing of titin, LIM domain binding 3 (Ldb3), calcium/calmodulin-dependent protein kinase II gamma (Camk2g), and triadin (Trdn). We determined the activation of mitogen-activated protein kinase (MAPK) signaling in primary cardiomyocytes treated with insulin, T3, and Ang II using western blotting; MAPK signaling was activated and RBM20 expression increased after treatment. Two downstream transcriptional factors c-jun and ETS Transcription Factor (ELK1) can bind the promoter of RBM20. A dual-luciferase activity assay revealed that Ang II, but not insulin and T3, can trigger ELK1 and thus promote transcription of RBM20. This study revealed that Ang II can trigger ELK1 through activation of MAPK signaling by enhancing RBM20 expression which regulates pre-mRNA splicing. Our study provides a potential therapeutic target for the treatment of cardiac diseases in RBM20-mediated pre-mRNA splicing.

2009 ◽  
Vol 296 (5) ◽  
pp. H1425-H1433 ◽  
Author(s):  
Shun-Guang Wei ◽  
Yang Yu ◽  
Zhi-Hua Zhang ◽  
Robert B. Felder

ANG II type 1 receptors (AT1R) mediate most of the central effects of ANG II on cardiovascular function, fluid homeostasis, and sympathetic drive. The mechanisms regulating AT1R expression in the brain are unknown. In some tissues, the AT1R can be upregulated by prolonged exposure to ANG II. We examined the hypothesis that ANG II upregulates the AT1R in the brain by stimulating the intracellular mitogen-activated protein kinase (MAPK) signaling pathway. Using molecular and immunochemical approaches, we examined expression of the AT1R and phosphorylated MAPK in the paraventricular nucleus of the hypothalamus (PVN) and the subfornical organ (SFO) of rats receiving a chronic (4-wk) subcutaneous infusion of ANG II (0.6 μg/h) or saline (vehicle control), with or without concomitant (4-wk) intracerebroventricular (ICV) infusions of MAPK inhibitors or the AT1R blocker losartan. Subcutaneous infusion of ANG II markedly increased phosphorylation of MAPK and expression of AT1R mRNA and protein and AT1R-like immunoreactivity in the PVN and SFO. ANG II-induced AT1R expression was blocked by ICV infusion of the p44/42 MAPK inhibitor PD-98059 (0.025 μg/h) and the JNK inhibitor SP-600125 (0.125 μg/h), but not by the p38 MAPK inhibitor SB-203580 (0.125 μg/h). Upregulation of the AT1R in the PVN and SFO by peripheral ANG II was abolished by ICV losartan (10 μg/h). The data indicate that blood-borne ANG II upregulates brain AT1R by activating intracellular p44/42 MAPK and JNK signaling pathways.


2009 ◽  
Vol 20 (9) ◽  
pp. 2473-2485 ◽  
Author(s):  
Ryosuke Satoh ◽  
Takahiro Morita ◽  
Hirofumi Takada ◽  
Ayako Kita ◽  
Shunji Ishiwata ◽  
...  

Myosin II is an essential component of the actomyosin contractile ring and plays a crucial role in cytokinesis by generating the forces necessary for contraction of the actomyosin ring. Cdc4 is an essential myosin II light chain in fission yeast and is required for cytokinesis. In various eukaryotes, the phosphorylation of myosin is well documented as a primary means of activating myosin II, but little is known about the regulatory mechanisms of Cdc4. Here, we isolated Nrd1, an RNA-binding protein with RNA-recognition motifs, as a multicopy suppressor of cdc4 mutants. Notably, we demonstrated that Nrd1 binds and stabilizes Cdc4 mRNA, thereby suppressing the cytokinesis defects of the cdc4 mutants. Importantly, Pmk1 mitogen-activated protein kinase (MAPK) directly phosphorylates Nrd1, thereby negatively regulating the binding activity of Nrd1 to Cdc4 mRNA. Consistently, the inactivation of Pmk1 MAPK signaling, as well as Nrd1 overexpression, stabilized the Cdc4 mRNA level, thereby suppressing the cytokinesis defects associated with the cdc4 mutants. In addition, we demonstrated the cell cycle–dependent regulation of Pmk1/Nrd1 signaling. Together, our results indicate that Nrd1 plays a role in the regulation of Cdc4 mRNA stability; moreover, our study is the first to demonstrate the posttranscriptional regulation of myosin expression by MAPK signaling.


Endocrinology ◽  
1998 ◽  
Vol 139 (4) ◽  
pp. 1801-1809 ◽  
Author(s):  
Ying Tian ◽  
Roger D. Smith ◽  
Tamas Balla ◽  
Kevin J. Catt

Abstract Angiotensin II (Ang II) stimulates growth and mitogenesis in bovine adrenal glomerulosa cells, but little is known about the signaling pathways that mediate these responses. An analysis of the growth-promoting pathways in cultured bovine adrenal glomerulosa cells revealed that Ang II, acting via the AT1 receptor, caused rapid but transient activation of mitogen-activated protein kinase (MAPK), with an ED50 of 10–50 pm. Although neither Ca2+ influx nor Ca2+ release from intracellular stores was sufficient to activate MAPK, Ca2+ appeared to play a permissive role in this response. A major component of Ang II-induced MAPK activation was insensitive to pertussis toxin (PTX), although a minor PTX-sensitive component could not be excluded. Ang II also induced the rapid activation of ras and raf-1 kinase with time-courses that correlated with that of MAPK. Activation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate was sufficient to activate both MAPK and raf-1 kinase. However, whereas PKC depletion had no effect on Ang II-induced raf-1 kinase activation, it attenuated Ang II-induced MAPK activation. Ang II also stimulated a mobility shift of raf-1, reflecting hyperphosphorylation of the kinase. However, unlike its activation, raf-1 hyperphosphorylation was dependent on PKC and its time-course correlated not with activation, but rather with deactivation of the kinase. Taken together, these findings indicate that Ang II stimulates multiple pathways to MAPK activation via PKC and ras/raf-1 kinase in bovine adrenal glomerulosa cells.


2014 ◽  
Vol 307 (11) ◽  
pp. H1643-H1654 ◽  
Author(s):  
Shun-Guang Wei ◽  
Zhi-Hua Zhang ◽  
Yang Yu ◽  
Robert B. Felder

The chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) and its receptors are expressed by neurons and glial cells in cardiovascular autonomic regions of the brain, including the hypothalamic paraventricular nucleus (PVN), and contribute to neurohumoral excitation in rats with ischemia-induced heart failure. The present study examined factors regulating the expression of SDF-1 in the PVN and mechanisms mediating its sympatho-excitatory effects. In urethane anesthetized rats, a 4-h intracerebroventricular (ICV) infusion of angiotensin II (ANG II) or tumor necrosis factor-α (TNF-α) in doses that increase mean blood pressure (MBP) and sympathetic drive increased the expression of SDF-1 in PVN. ICV administration of SDF-1 increased the phosphorylation of p44/42 mitogen-activated protein kinase (MAPK), JNK, and p38 MAPK in PVN, along with MBP, heart rate (HR), and renal sympathetic nerve activity (RSNA), but did not affect total p44/42 MAPK, JNK, and p38 MAPK levels. ICV pretreatment with the selective p44/42 MAPK inhibitor PD98059 prevented the SDF-1-induced increases in MBP, HR, and RSNA; ICV pretreatment with the selective JNK and p38 MAPK inhibitors attenuated but did not block these SDF-1-induced excitatory responses. ICV PD98059 also prevented the sympatho-excitatory response to bilateral PVN microinjections of SDF-1. ICV pretreatment with SDF-1 short-hairpin RNA significantly reduced ANG II- and TNF-α-induced phosphorylation of p44/42 MAPK in PVN. These findings identify TNF-α and ANG II as drivers of SDF-1 expression in PVN and suggest that the full expression of their cardiovascular and sympathetic effects depends upon SDF-1-mediated activation of p44/42 MAPK signaling.


2021 ◽  
Vol 22 (19) ◽  
pp. 10260
Author(s):  
Constantin Stefani ◽  
Daniela Miricescu ◽  
Iulia-Ioana Stanescu-Spinu ◽  
Remus Iulian Nica ◽  
Maria Greabu ◽  
...  

Colorectal cancer (CRC) is a predominant malignancy worldwide, being the fourth most common cause of mortality and morbidity. The CRC incidence in adolescents, young adults, and adult populations is increasing every year. In the pathogenesis of CRC, various factors are involved including diet, sedentary life, smoking, excessive alcohol consumption, obesity, gut microbiota, diabetes, and genetic mutations. The CRC tumor microenvironment (TME) involves the complex cooperation between tumoral cells with stroma, immune, and endothelial cells. Cytokines and several growth factors (GFs) will sustain CRC cell proliferation, survival, motility, and invasion. Epidermal growth factor receptor (EGFR), Insulin-like growth factor -1 receptor (IGF-1R), and Vascular Endothelial Growth Factor -A (VEGF-A) are overexpressed in various human cancers including CRC. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) and all the three major subfamilies of the mitogen-activated protein kinase (MAPK) signaling pathways may be activated by GFs and will further play key roles in CRC development. The main aim of this review is to present the CRC incidence, risk factors, pathogenesis, and the impact of GFs during its development. Moreover, the article describes the relationship between EGF, IGF, VEGF, GFs inhibitors, PI3K/AKT/mTOR-MAPK signaling pathways, and CRC.


Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 707-707
Author(s):  
Kai Kappert ◽  
Florian Blaschke ◽  
Gunther Schmidt ◽  
Eckart Fleck ◽  
Ronald E Law ◽  
...  

P78 The activation of local and systemic renin-angiotensin-system is directly and indirectly involved in the mechanisms of vascular remodeling during chronic hypertension. The following study investigated the effect of chronic angiotensin II (AII) admininstration on cell- matrix interaction of VSMCs in vitro. Adhesion to vitronectin (VN) and collagen I (ColI) as well as migration of rat vascular smooth muscle cells (VSMCs) were significantly augmented by chronic treatment with AII for 48 hours and 72 hours. These changes were not due to an increase of the integrins on the cells surface known to be capable in binding vitronectin and collagen I: alpha1, alpha5, beta1 and beta5, as demonstrated by flow cytometry. Also the phosporylation of the focal adhesion kinase (FAK), known to play an important role in adhesion and spreading processes, was not affected after chronic stimulation with Ang II. Downregulation of PKC activity by phorbol-myristate acetate (PMA, 0.1μmol/L), or treatment with the PKC inhibitor calphostin C before treatment with AII significantly reduced the effect of AII on adhesion to VN and ColI (each p<0.05) and also inhibited the effect on VSMC migration (p<0.01). Inhibition of MAP-kinase activation with PD 98059 before treatment with AII demonstrated comparable effects. PD 98059 significantly reduced the increase in adhesion on both, VN and ColI and diminished the effect on PDGF-directed migration of rVSMCs. Theses data indicate that regulation of these functional alterations in integrin-dependent cellular behaviour after chronic AII treatment involved protein kinase C (PKC) and mitogen-activated protein kinase (MAPK)-activation. These data demonstrate that Ang II plays a critical role in augmenting cellular functions in VSMCs, which are important molecular events for the development of vascular hyperplasia .


2007 ◽  
Vol 292 (6) ◽  
pp. H2997-H3005 ◽  
Author(s):  
Lili Ding ◽  
Alexander Chapman ◽  
Ryan Boyd ◽  
Hui Di Wang

Arteries from hypertensive animals and humans have increased spontaneous tone. Increased superoxide anion (superoxide) contributes to elevated blood pressure (BP) and spontaneous tone in hypertension. The association between the extracellular signaling-regulated kinase 1/2 (ERK1/2)-mitogen-activated protein kinase (MAPK) signaling pathway and generation of superoxide and spontaneous tone in isolated aorta was studied in angiotensin II (ANG II)-infused hypertensive (HT) rats. Systolic BP, phosphorylation of ERK, aortic superoxide formation, and aortic spontaneous tone were compared in sham normotensive and HT rats. Infusion of ANG II (0.5 mg·kg−1·day−1 for 6 days) significantly elevated the systolic BP ( P < 0.01). The phosphorylation of ERK1/2 vs. total ERK1/2 in thoracic aorta was enhanced, and superoxide was increased in the HT vs. the sham group ( P < 0.01). Spontaneous tone developed in the HT group, but not in the normotensive group. MAPK/ERK1/2 (MEK1/2)-ERK1/2 signaling pathway inhibitors, PD-98059 (10 μmol/l), and U-0126 (10 μmol/l), significantly reduced the phosphorylation of ERK1/2, superoxide generation ( P < 0.01), and spontaneous tone ( P < 0.01) in HT. These findings suggest that ANG II infusion induces the production of superoxide and spontaneous tone and that both are dependent on ERK-MAPK activation. In endothelium-denuded aorta, however, MEK1/2 inhibitors did not inhibit the spontaneous tone, even though they significantly reduced superoxide generation similar to endothelium-intact aorta. These data suggest that inhibition of ERK1/2 signaling pathway, via PD-98059 or U-0126, may regulate spontaneous tone in an endothelium-dependent manner. In conclusion, these findings support the importance of the ERK1/2 signaling pathway in modulating vascular oxidative stress and subsequently mediating spontaneous tone in HT.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hawa Nordin Siti ◽  
Juriyati Jalil ◽  
Ahmad Yusof Asmadi ◽  
Yusof Kamisah

Cardiac hypertrophy is characteristic of heart failure in patients who have experienced cardiac remodeling. Many medicinal plants, including Parkia speciosa Hassk., have documented cardioprotective effects against such pathologies. This study investigated the activity of P. speciosa empty pod extract against cardiomyocyte hypertrophy in H9c2 cardiomyocytes exposed to angiotensin II (Ang II). In particular, its role in modulating the Ang II/reactive oxygen species/nitric oxide (Ang II/ROS/NO) axis and mitogen-activated protein kinase (MAPK) pathway was examined. Treatment with the extract (12.5, 25, and 50 μg/ml) prevented Ang II-induced increases in cell size, NADPH oxidase activity, B-type natriuretic peptide levels, and reactive oxygen species and reductions in superoxide dismutase activity. These were comparable to the effects of the valsartan positive control. However, the extract did not significantly ameliorate the effects of Ang II on inducible nitric oxide synthase activity and nitric oxide levels, while valsartan did confer such protection. Although the extract decreased the levels of phosphorylated extracellular signal-related kinase, p38, and c-Jun N-terminal kinase, valsartan only decreased phosphorylated c-Jun N-terminal kinase expression. Phytochemical screening identified the flavonoids rutin (1) and quercetin (2) in the extract. These findings suggest that P. speciosa empty pod extract protects against Ang II-induced cardiomyocyte hypertrophy, possibly by modulating the Ang II/ROS/NO axis and MAPK signaling pathway via a mechanism distinct from valsartan.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lin Lu ◽  
Jianjian Huang ◽  
Xia Xue ◽  
Ting Wang ◽  
Zhouqing Huang ◽  
...  

Elevated extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase-9 (MMP-9) in oxidized low density lipoprotein (oxLDL)-induced macrophages leads to the progression of vulnerable plaques by degradation of the extracellular matrix. Our previous report showed that berberine regulates the expression of both EMMPRIN and MMP-9. In addition, P2X7 receptor (P2X7R) upregulation plays a crucial role in the development of atherosclerosis. However, it is unclear whether berberine regulated P2X7R level to inhibit both EMMPRIN and MMP-9 expession in macrophages. In the present study, we investigated the impact of berberine on P2X7R expression and the regulation of P2X7R in the expression of EMMPRIN and MMP-9 in oxLDL-induced macrophages. We found that P2X7R expression was increased, miR150-5p was reduced in oxLDL-induced macrophages, relatively. And A-438079 (a P2X7R inhibitor) or miR150-5p mimic treatment greatly reversed the upregulation of EMMPRIN and MMP-9 expression. Moreover, A-438079 significantly reduced oxLDL-induced AMP-activated protein kinase-α (AMPK-α) phosphorylation and reversed the activation of mitogen-activated protein kinase (MAPK), which in turn decreased the expression of EMMPRIN and MMP-9. These findings illustrate that P2X7R suppresses EMMPRIN and MMP-9 expression by inhibiting the AMPK-α/MAPK pathway in oxLDL-induced macrophages. Accordingly, exposure to berberine markedly upregulated miR150-5p, decreased P2X7R expression and downregulated MMP-9 and EMMPRIN levels in oxLDL-induced macrophages, resulting in AMPK-α/MAPK (JNK, p38, and ERK) inactivation. Overall, these results indicate that berberine increased miR150-5p level, subsequently inhibits P2X7R-mediated EMMPRIN and MMP-9 expression by suppressing AMPK-α and MAPK signaling in oxLDL-induced macrophages.


2018 ◽  
Vol 19 (9) ◽  
pp. 2646 ◽  
Author(s):  
Hui-Yu Peng ◽  
Yu-Chih Liang ◽  
Tse-Hua Tan ◽  
Huai-Chia Chuang ◽  
Ying-Ju Lin ◽  
...  

An increase in mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) reportedly attenuates insulin-mediated signaling which participates in the development of brown adipose tissues (BATs). Nevertheless, the effect of MAP4K4 on brown adipogenesis remains largely uncharacterized. In this study, results of a transcriptome analysis (also referred as RNA-sequencing) showed differential expressions of MAP4K4 or SRSF3 transcripts isolated from distinct stages of embryonic BATs. The discriminative splicing profiles of MAP4K4 or SRSF3 were noted as well in brown adipocytes (BAs) with RNA-binding motif protein 4-knockout (RBM4−/−) compared to the wild-type counterparts. Moreover, the relatively high expressions of authentic SRSF3 transcripts encoding the splicing factor functioned as a novel regulator toward MAP4K4 splicing during brown adipogenesis. The presence of alternatively spliced MAP4K4 variants exerted differential effects on the phosphorylation of c-Jun N-terminal protein kinase (JNK) which was correlated with the differentiation or metabolic signature of BAs. Collectively, the RBM4-SRSF3-MAP4K4 splicing cascade constitutes a novel molecular mechanism in manipulating the development of BAs through related signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document