scholarly journals Whole-Genome and Transposed Duplication Contributes to the Expansion and Diversification of TLC Genes in Maize

2019 ◽  
Vol 20 (21) ◽  
pp. 5484
Author(s):  
Weina Si ◽  
Tianlu Hang ◽  
Mingyue Guo ◽  
Zhen Chen ◽  
Qizhi Liang ◽  
...  

TLC (TRAM/LAG/CRN8) proteins play important roles in ceramide metabolism and mycotoxin resistance. Herein a comparative genomics analysis of TLCs was performed in 31 plant and 3 species from other kingdoms, with an emphasis mainly on maize. TLCs were conserved across kingdoms and expanded in angiosperms, largely due to whole-genome/segmental duplication (WGD/SD) under purifying selection. Phylogeny reconstruction by maximum-likelihood method uncovered five TLC clades, subsequently named as TRAM/LAG, CLN8, PS-TLC, TM136 and TLCD clades. Each clade of TLCs shared specific transmembrane regions and motif composition. Divisions of conserved motifs to subunits may have occurred in TM136-type TLCs. Focusing on maize, five WGD and two DNA-mediated transposed duplication (TD) pairs were discovered, accounting for 61.11% ZmTLCs. Combined with further expression analysis, significant divergence was found in expression patterns between most maize WGD pairs, indicating subfunctionalization or/and neofunctionalization. Moreover, ZmTLC5, a deduced parental copy in a TD pair, was highly induced under FB1 and fungus pathogen injection and exhibited potential capacity to respond to environmental stimuli. Additionally, population genetics analysis showed that ZmTLC10 in the CLN8-clade may have experienced significant positive selection and differentiated between wild and inbred maize populations. Overall, our results help to decipher the evolutionary history of TLCs in maize and plants, facilitating further functional analysis of them.

2020 ◽  
Author(s):  
Er-meng Yu ◽  
Tatsuki Yoshinaga ◽  
Frank L. Jalufka ◽  
Hashimul Ehsan ◽  
David B. Mark Welch ◽  
...  

AbstractThe 70-kDa heat shock protein (HSP70) family contains several isoforms localized in different subcellular compartments. The cytosolic isoforms have been classified into stress-inducible HSP70s and constitutive heat shock cognates (HSC70s), but occasional reports of “constitutive HSP70s” and the lack of cross-phylum comparisons have been a source of confusion in the evolution of the metazoan HSP70 family. Here we provide novel insights into the evolutionary history of this important molecular chaperone. We first cloned two HSP70 genes from the rotifer Brachionus plicatilis, an emerging model in evolutionary genetics, and confirmed their stress inducibility. Subsequent phylogenetic analyses of 100 full-length HSP70 family member genes revealed an ancient duplication that gave rise to two lineages from which all metazoan cytosolic HSP70s descend. One lineage contains a relatively small number of Lophotrochozoan and Ecdysozoan genes, none of which have been shown to be constitutively expressed. The second included both inducible and constitutive genes from diverse phyla. Species-specific duplications are present in both lineages, and in the second there are well-supported phylum-specific clades for Rotifera, Nematoda, and Chordata. Some genes in this lineage have likely independently acquired stress inducibility, which may explain the sporadic distribution of genes designated as “HSP70” or “HSC70” in previous analyses. Consistent with the history of diversification within each group, stress-inducible members of the second lineage show lower purifying selection pressure compared to constitutive members. These results illustrate the evolutionary history of the HSP70 family independent from their expression patterns, encouraging the development of new nomenclature based on evolutionary history.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ming Ma ◽  
Qiming Chen ◽  
Huizhen Dong ◽  
Shaoling Zhang ◽  
Xiaosan Huang

Abstract Background Transcription factors (TFs) are involved in many important biological processes, including cell stretching, histological differentiation, metabolic activity, seed storage, gene regulation, and response to abiotic and biotic stresses. Little is known about the functions, evolutionary history, and expression patterns of basic region-leucine zipper TF family genes in pear, despite the release of the genome of Chinese white pears (“Dangshansuli”). Results Overall, 92 bZIP genes were identified in the pear genome (Pyrus breschneideri). Of these, 83 were randomly distributed on all 17 chromosomes except chromosome 4, and the other 9 genes were located on loose scaffolding. The genes were divided into 14 subgroups. Whole-genome duplications, dispersed duplication, and purifying selection for whole-genome duplications are the main reasons for the expansion of the PbrbZIP gene family. The analysis of functional annotation enrichment indicated that most of the functions of PbrbZIP genes were enriched in Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways involved in the abiotic stress response. Next, expression analysis and virus-induced gene silencing results indicated that PbrbZIP genes might play critical roles in response to drought and cold stresses, especially for the genes from subgroups A, C, G, I, and S. Conclusions Ninety-two PbrbZIP genes were identified from the pear genome and classified into 14 subgroups. PbrbZIP genes were mainly expanded from whole-genome duplications and dispersed duplications and retained by purifying selection. PbrbZIP genes were induced by cold and drought stresses and played important roles in drought and cold tolerance. These results provided useful information for further increasing the tolerance of pears to stresses and a foundation to study the cold and drought tolerance mechanism of PbrbZIP genes.


Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1249-1257
Author(s):  
Ilya Ruvinsky ◽  
Lee M Silver ◽  
Jeremy J Gibson-Brown

Abstract The duplication of preexisting genes has played a major role in evolution. To understand the evolution of genetic complexity it is important to reconstruct the phylogenetic history of the genome. A widely held view suggests that the vertebrate genome evolved via two successive rounds of whole-genome duplication. To test this model we have isolated seven new T-box genes from the primitive chordate amphioxus. We find that each amphioxus gene generally corresponds to two or three vertebrate counterparts. A phylogenetic analysis of these genes supports the idea that a single whole-genome duplication took place early in vertebrate evolution, but cannot exclude the possibility that a second duplication later took place. The origin of additional paralogs evident in this and other gene families could be the result of subsequent, smaller-scale chromosomal duplications. Our findings highlight the importance of amphioxus as a key organism for understanding evolution of the vertebrate genome.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xin Wang ◽  
Ming-Hua Wu ◽  
Dong Xiao ◽  
Ruo-Lan Huang ◽  
Jie Zhan ◽  
...  

Abstract Background As an important cash crop, the yield of peanut is influenced by soil acidification and pathogen infection. Receptor-like protein kinases play important roles in plant growth, development and stress responses. However, little is known about the number, location, structure, molecular phylogeny, and expression of RLKs in peanut, and no comprehensive analysis of RLKs in the Al stress response in peanuts have been reported. Results A total of 1311 AhRLKs were identified from the peanut genome. The AhLRR-RLKs and AhLecRLKs were further divided into 24 and 35 subfamilies, respectively. The AhRLKs were randomly distributed across all 20 chromosomes in the peanut. Among these AhRLKs, 9.53% and 61.78% originated from tandem duplications and segmental duplications, respectively. The ka/ks ratios of 96.97% (96/99) of tandem duplication gene pairs and 98.78% (646/654) of segmental duplication gene pairs were less than 1. Among the tested tandem duplication clusters, there were 28 gene conversion events. Moreover, all total of 90 Al-responsive AhRLKs were identified by mining transcriptome data, and they were divided into 7 groups. Most of the Al-responsive AhRLKs that clustered together had similar motifs and evolutionarily conserved structures. The gene expression patterns of these genes in different tissues were further analysed, and tissue-specifically expressed genes, including 14 root-specific Al-responsive AhRLKs were found. In addition, all 90 Al-responsive AhRLKs which were distributed unevenly in the subfamilies of AhRLKs, showed different expression patterns between the two peanut varieties (Al-sensitive and Al-tolerant) under Al stress. Conclusions In this study, we analysed the RLK gene family in the peanut genome. Segmental duplication events were the main driving force for AhRLK evolution, and most AhRLKs subject to purifying selection. A total of 90 genes were identified as Al-responsive AhRLKs, and the classification, conserved motifs, structures, tissue expression patterns and predicted functions of Al-responsive AhRLKs were further analysed and discussed, revealing their putative roles. This study provides a better understanding of the structures and functions of AhRLKs and Al-responsive AhRLKs.


2021 ◽  
Vol 13 (4) ◽  
Author(s):  
Camilla A Santos ◽  
Gabriel G Sonoda ◽  
Thainá Cortez ◽  
Luiz L Coutinho ◽  
Sónia C S Andrade

Abstract Understanding how selection shapes population differentiation and local adaptation in marine species remains one of the greatest challenges in the field of evolutionary biology. The selection of genes in response to environment-specific factors and microenvironmental variation often results in chaotic genetic patchiness, which is commonly observed in rocky shore organisms. To identify these genes, the expression profile of the marine gastropod Littoraria flava collected from four Southeast Brazilian locations in ten rocky shore sites was analyzed. In this first L. flava transcriptome, 250,641 unigenes were generated, and 24% returned hits after functional annotation. Independent paired comparisons between 1) transects, 2) sites within transects, and 3) sites from different transects were performed for differential expression, detecting 8,622 unique differentially expressed genes. Araçá (AR) and São João (SJ) transect comparisons showed the most divergent gene products. For local adaptation, fitness-related differentially expressed genes were chosen for selection tests. Nine and 24 genes under adaptative and purifying selection, respectively, were most related to biomineralization in AR and chaperones in SJ. The biomineralization-genes perlucin and gigasin-6 were positively selected exclusively in the site toward the open ocean in AR, with sequence variants leading to pronounced protein structure changes. Despite an intense gene flow among L. flava populations due to its planktonic larva, gene expression patterns within transects may be the result of selective pressures. Our findings represent the first step in understanding how microenvironmental genetic variation is maintained in rocky shore populations and the mechanisms underlying local adaptation in marine species.


Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 212 ◽  
Author(s):  
Le Phuong Nguyen ◽  
Naina Adren Pinto ◽  
Thao Nguyen Vu ◽  
Hung Mai ◽  
An HT Pham ◽  
...  

Recently, a blaNDM-9 and mcr-1 co-harboring E. coli ST 617 isolate was identified from an asymptomatic carrier in Korea. An 81-year-old female was admitted to a university hospital for aortic cardiac valve repair surgery. Following surgery, she was admitted to the intensive care unit (ICU) for three days, and carbapenem-resistant E. coli YMC/2017/02/MS631 was isolated from a surveillance culture (rectal swab). Antimicrobial susceptibility testing (AST) for colistin was not performed at that time. Upon retrospective study, further AST revealed resistance to all tested antibiotics, including meropenem, imipenem, ceftazidime-avibactam, amikacin, gentamicin, ciprofloxacin, trimethoprim-sulfamethoxazole, and colistin, with the exception of tigecycline. Whole genome sequencing analyses showed that this strain belonged to the ST617 serotype O89/162: H10 and harbored three β-lactamase genes (blaTEM-1B, blaCTX-M-55, blaNDM-9), mcr-1, and 14 other resistance genes. Seven plasmid replicon types (IncB, IncFII, IncI2, IncN, IncY, IncR, IncX1) were identified. Horizontal transfer of blaNDM-9 and mcr-1 from donor cells to the recipient E. coli J53 has been observed. blaNDM-9 and mcr-1 were carried by IncB and IncI2 plasmids, respectively. To speculate on the incidence of this strain, routine rectal swab screening to identify asymptomatic carriers might be warranted, in addition to the screening of ICU patients.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hao Song ◽  
Ximing Guo ◽  
Lina Sun ◽  
Qianghui Wang ◽  
Fengming Han ◽  
...  

Abstract Background Inhibitors of apoptosis (IAPs) are critical regulators of programmed cell death that are essential for development, oncogenesis, and immune and stress responses. However, available knowledge regarding IAP is largely biased toward humans and model species, while the distribution, function, and evolutionary novelties of this gene family remain poorly understood in many taxa, including Mollusca, the second most speciose phylum of Metazoa. Results Here, we present a chromosome-level genome assembly of an economically significant bivalve, the hard clam Mercenaria mercenaria, which reveals an unexpected and dramatic expansion of the IAP gene family to 159 members, the largest IAP gene repertoire observed in any metazoan. Comparative genome analysis reveals that this massive expansion is characteristic of bivalves more generally. Reconstruction of the evolutionary history of molluscan IAP genes indicates that most originated in early metazoans and greatly expanded in Bivalvia through both lineage-specific tandem duplication and retroposition, with 37.1% of hard clam IAPs located on a single chromosome. The expanded IAPs have been subjected to frequent domain shuffling, which has in turn shaped their architectural diversity. Further, we observed that extant IAPs exhibit dynamic and orchestrated expression patterns among tissues and in response to different environmental stressors. Conclusions Our results suggest that sophisticated regulation of apoptosis enabled by the massive expansion and diversification of IAPs has been crucial for the evolutionary success of hard clam and other molluscan lineages, allowing them to cope with local environmental stresses. This study broadens our understanding of IAP proteins and expression diversity and provides novel resources for studying molluscan biology and IAP function and evolution.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Fan Jiang ◽  
Ruiyi Lin ◽  
Changyi Xiao ◽  
Tanghui Xie ◽  
Yaoxin Jiang ◽  
...  

Abstract Background The most prolific duck genetic resource in the world is located in Southeast/South Asia but little is known about the domestication and complex histories of these duck populations. Results Based on whole-genome resequencing data of 78 ducks (Anas platyrhynchos) and 31 published whole-genome duck sequences, we detected three geographic distinct genetic groups, including local Chinese, wild, and local Southeast/South Asian populations. We inferred the demographic history of these duck populations with different geographical distributions and found that the Chinese and Southeast/South Asian ducks shared similar demographic features. The Chinese domestic ducks experienced the strongest population bottleneck caused by domestication and the last glacial maximum (LGM) period, whereas the Chinese wild ducks experienced a relatively weak bottleneck caused by domestication only. Furthermore, the bottleneck was more severe in the local Southeast/South Asian populations than in the local Chinese populations, which resulted in a smaller effective population size for the former (7100–11,900). We show that extensive gene flow has occurred between the Southeast/South Asian and Chinese populations, and between the Southeast Asian and South Asian populations. Prolonged gene flow was detected between the Guangxi population from China and its neighboring Southeast/South Asian populations. In addition, based on multiple statistical approaches, we identified a genomic region that included three genes (PNPLA8, THAP5, and DNAJB9) on duck chromosome 1 with a high probability of gene flow between the Guangxi and Southeast/South Asian populations. Finally, we detected strong signatures of selection in genes that are involved in signaling pathways of the nervous system development (e.g., ADCYAP1R1 and PDC) and in genes that are associated with morphological traits such as cell growth (e.g., IGF1R). Conclusions Our findings provide valuable information for a better understanding of the domestication and demographic history of the duck, and of the gene flow between local duck populations from Southeast/South Asia and China.


2021 ◽  
Vol 9 ◽  
Author(s):  
Audrey C. Woerner ◽  
Renata C. Gallagher ◽  
Jerry Vockley ◽  
Aashish N. Adhikari

Newborn screening (NBS) is a population-based program with a goal of reducing the burden of disease for conditions with significant clinical impact on neonates. Screening tests were originally developed and implemented one at a time, but newer methods have allowed the use of multiplex technologies to expand additions more rapidly to standard panels. Recent improvements in next-generation sequencing are also evolving rapidly from first focusing on individual genes, then panels, and finally all genes as encompassed by whole exome and genome sequencing. The intersection of these two technologies brings the revolutionary possibility of identifying all genetic disorders in newborns, allowing implementation of therapies at the optimum time regardless of symptoms. This article reviews the history of newborn screening and early studies examining the use of whole genome and exome sequencing as a screening tool. Lessons learned from these studies are discussed, along with technical, ethical, and societal challenges to broad implementation.


Sign in / Sign up

Export Citation Format

Share Document