scholarly journals Correction of RNA-Binding Protein CUGBP1 and GSK3β Signaling as Therapeutic Approach for Congenital and Adult Myotonic Dystrophy Type 1

2019 ◽  
Vol 21 (1) ◽  
pp. 94 ◽  
Author(s):  
Lubov Timchenko

Myotonic dystrophy type 1 (DM1) is a complex genetic disease affecting many tissues. DM1 is caused by an expansion of CTG repeats in the 3′-UTR of the DMPK gene. The mechanistic studies of DM1 suggested that DMPK mRNA, containing expanded CUG repeats, is a major therapeutic target in DM1. Therefore, the removal of the toxic RNA became a primary focus of the therapeutic development in DM1 during the last decade. However, a cure for this devastating disease has not been found. Whereas the degradation of toxic RNA remains a preferential approach for the reduction of DM1 pathology, other approaches targeting early toxic events downstream of the mutant RNA could be also considered. In this review, we discuss the beneficial role of the restoring of the RNA-binding protein, CUGBP1/CELF1, in the correction of DM1 pathology. It has been recently found that the normalization of CUGBP1 activity with the inhibitors of GSK3 has a positive effect on the reduction of skeletal muscle and CNS pathologies in DM1 mouse models. Surprisingly, the inhibitor of GSK3, tideglusib also reduced the toxic CUG-containing RNA. Thus, the development of the therapeutics, based on the correction of the GSK3β-CUGBP1 pathway, is a promising option for this complex disease.

2021 ◽  
Vol 13 ◽  
Author(s):  
Jie Liu ◽  
Zhen-Ni Guo ◽  
Xiu-Li Yan ◽  
Yi Yang ◽  
Shuo Huang

Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3′-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.


2019 ◽  
Vol 116 (50) ◽  
pp. 25203-25213 ◽  
Author(s):  
Ariadna Bargiela ◽  
Maria Sabater-Arcis ◽  
Jorge Espinosa-Espinosa ◽  
Miren Zulaica ◽  
Adolfo Lopez de Munain ◽  
...  

Myotonic dystrophy type 1 (DM1) is a life-threatening and chronically debilitating neuromuscular disease caused by the expansion of a CTG trinucleotide repeat in the 3′ UTR of the DMPK gene. The mutant RNA forms insoluble structures capable of sequestering RNA binding proteins of the Muscleblind-like (MBNL) family, which ultimately leads to phenotypes. In this work, we demonstrate that treatment with the antiautophagic drug chloroquine was sufficient to up-regulate MBNL1 and 2 proteins in Drosophila and mouse (HSALR) models and patient-derived myoblasts. Extra Muscleblind was functional at the molecular level and improved splicing events regulated by MBNLs in all disease models. In vivo, chloroquine restored locomotion, rescued average cross-sectional muscle area, and extended median survival in DM1 flies. In HSALR mice, the drug restored muscular strength and histopathology signs and reduced the grade of myotonia. Taken together, these results offer a means to replenish critically low MBNL levels in DM1.


2010 ◽  
Vol 43 (6) ◽  
pp. 149-156 ◽  
Author(s):  
Kyoko Itoh ◽  
Maki Mitani ◽  
Kunihiko Kawamoto ◽  
Naonobu Futamura ◽  
Itaru Funakawa ◽  
...  

Author(s):  
Xiaopeng Shen ◽  
Zhongxian Liu ◽  
Chunguang Wang ◽  
Feng Xu ◽  
Jingyi Zhang ◽  
...  

Myotonic dystrophy type 1 (DM1) is an inherited neuromuscular disease caused by expanded CTG repeats in the 3′ untranslated region (3′UTR) of the DMPK gene. The myogenesis process is defective in DM1, which is closely associated with progressive muscle weakness and wasting. Despite many proposed explanations for the myogenesis defects in DM1, the underlying mechanism and the involvement of the extracellular microenvironment remained unknown. Here, we constructed a DM1 myoblast cell model and reproduced the myogenesis defects. By RNA sequencing (RNA-seq), we discovered that periostin (Postn) was the most significantly upregulated gene in DM1 myogenesis compared with normal controls. This difference in Postn was confirmed by real-time quantitative PCR (RT-qPCR) and western blotting. Moreover, Postn was found to be significantly upregulated in skeletal muscle and myoblasts of DM1 patients. Next, we knocked down Postn using a short hairpin RNA (shRNA) in DM1 myoblast cells and found that the myogenesis defects in the DM1 group were successfully rescued, as evidenced by increases in the myotube area, the fusion index, and the expression of myogenesis regulatory genes. Similarly, Postn knockdown in normal myoblast cells enhanced myogenesis. As POSTN is a secreted protein, we treated the DM1 myoblast cells with a POSTN-neutralizing antibody and found that DM1 myogenesis defects were successfully rescued by POSTN neutralization. We also tested the myogenic ability of myoblasts in the skeletal muscle injury mouse model and found that Postn knockdown improved the myogenic ability of DM1 myoblasts. The activity of the TGF-β/Smad3 pathway was upregulated during DM1 myogenesis but repressed when inhibiting Postn with a Postn shRNA or a POSTN-neutralizing antibody, which suggested that the TGF-β/Smad3 pathway might mediate the function of Postn in DM1 myogenesis. These results suggest that Postn is a potential therapeutical target for the treatment of myogenesis defects in DM1.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256276
Author(s):  
Nafisa Neault ◽  
Sean O’Reilly ◽  
Aiman Tariq Baig ◽  
Julio Plaza-Diaz ◽  
Mehrdad Azimi ◽  
...  

Myotonic Dystrophy Type 1 (DM1) is the most common form of adult muscular dystrophy (~1:8000). In DM1, expansion of CTG trinucleotide repeats in the 3’ untranslated region of the dystrophia myotonica protein kinase (DMPK) gene results in DMPK mRNA hairpin structures which aggregate as insoluble ribonuclear foci and sequester several RNA-binding proteins. The resulting sequestration and misregulation of important splicing factors, such as muscleblind-like 1 (MBNL1), causes the aberrant expression of fetal transcripts for several genes that contribute to the disease phenotype. Previous work has shown that antisense oligonucleotide-mediated disaggregation of the intranuclear foci has the potential to reverse downstream anomalies. To explore whether the nuclear foci are, to some extent, controlled by cell signalling pathways, we have performed a screen using a small interfering RNA (siRNA) library targeting 518 protein kinases to look at kinomic modulation of foci integrity. RNA foci were visualized by in situ hybridization of a fluorescent-tagged (CAG)10 probe directed towards the expanded DMPK mRNA and the cross-sectional area and number of foci per nuclei were recorded. From our screen, we have identified PACT (protein kinase R (PKR) activator) as a novel modulator of foci integrity and have shown that PACT knockdown can both increase MBNL1 protein levels; however, these changes are not suffcient for significant correction of downstream spliceopathies.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Dušanka Savić Pavićević ◽  
Jelena Miladinović ◽  
Miloš Brkušanin ◽  
Saša Šviković ◽  
Svetlana Djurica ◽  
...  

Myotonic dystrophy type 1 (DM1) is the most common adult onset muscular dystrophy, presenting as a multisystemic disorder with extremely variable clinical manifestation, from asymptomatic adults to severely affected neonates. A striking anticipation and parental-gender effect upon transmission are distinguishing genetic features in DM1 pedigrees. It is an autosomal dominant hereditary disease associated with an unstable expansion of CTG repeats in the 3′-UTR of theDMPKgene, with the number of repeats ranging from 50 to several thousand. The number of CTG repeats broadly correlates with both the age-at-onset and overall severity of the disease. Expanded DM1 alleles are characterized by a remarkable expansion-biased and gender-specific germline instability, and tissue-specific, expansion-biased, age-dependent, and individual-specific somatic instability. Mutational dynamics in male and female germline account for observed anticipation and parental-gender effect in DM1 pedigrees, while mutational dynamics in somatic tissues contribute toward the tissue-specificity and progressive nature of the disease. Genetic test is routinely used in diagnostic procedure for DM1 for symptomatic, asymptomatic, and prenatal testing, accompanied with appropriate genetic counseling and, as recommended, without predictive information about the disease course. We review molecular genetics of DM1 with focus on those issues important for genetic testing and counseling.


2013 ◽  
Vol 48 (1) ◽  
pp. 105-108 ◽  
Author(s):  
Kenji Jinnai ◽  
Maki Mitani ◽  
Naonobu Futamura ◽  
Kunihiko Kawamoto ◽  
Itaru Funakawa ◽  
...  

2021 ◽  
Author(s):  
Max J. F. Degener ◽  
Remco T.P. van Cruchten ◽  
Brittney A. Otero ◽  
Eric T. Wang ◽  
Derick G. Wansink ◽  
...  

ABSTRACTIn patients with myotonic dystrophy type 1 (DM1), dysregulation of RNA-binding proteins like MBNL and CELF1 leads to alternative splicing of exons and is thought to induce a return to fetal splicing patterns in adult tissues, including the central nervous system (CNS). To comprehensively evaluate this, we created an atlas of developmentally regulated splicing patterns in the frontal cortex of healthy individuals and DM1 patients by combining RNA-seq data from BrainSpan, GTEx and DM1 patients. Thirty four splice events displayed an inclusion pattern in DM1 patients that is typical for the fetal situation in healthy individuals. The regulation of DM1-relevant splicing patterns could partly be explained by changes in mRNA expression of the splice regulators MBNL1, MBNL2 and CELF1. On the contrary, interindividual differences in splicing patterns between healthy adults could not be explained by differential expression of these splice regulators. Our findings lend transcriptome-wide evidence to the previously noted shift to fetal splicing patterns in the adult DM1 brain as a consequence of an imbalance in antagonistic MBNL and CELF1 activities. Our atlas serves as a solid foundation for further study and understanding of the cognitive phenotype in patients.


2012 ◽  
Vol 22 (4) ◽  
pp. 704-716 ◽  
Author(s):  
Juan M. Fernandez-Costa ◽  
Amparo Garcia-Lopez ◽  
Sheila Zuñiga ◽  
Victoria Fernandez-Pedrosa ◽  
Amelia Felipo-Benavent ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 757 ◽  
Author(s):  
Alfonsina Ballester-Lopez ◽  
Ian Linares-Pardo ◽  
Emma Koehorst ◽  
Judit Núñez-Manchón ◽  
Guillem Pintos-Morell ◽  
...  

The number of cytosine-thymine-guanine (CTG) repeats (‘CTG expansion size’) in the 3′untranslated region (UTR) region of the dystrophia myotonica-protein kinase (DMPK) gene is a hallmark of myotonic dystrophy type 1 (DM1), which has been related to age of disease onset and clinical severity. However, accurate determination of CTG expansion size is challenging due to its characteristic instability. We compared five different approaches (heat pulse extension polymerase chain reaction [PCR], long PCR-Southern blot [with three different primers sets—1, 2 and 3] and small pool [SP]-PCR) to estimate CTG expansion size in the progenitor allele as well as the most abundant CTG expansion size, in 15 patients with DM1. Our results indicated variability between the methods (although we found no overall differences between long PCR 1 and 2 and SP-PCR, respectively). While keeping in mind the limited sample size of our patient cohort, SP-PCR appeared as the most suitable technique, with an inverse significant correlation found between CTG expansion size of the progenitor allele, as determined by this method, and age of disease onset (r = −0.734, p = 0.016). Yet, in light of the variability of the results obtained with the different methods, we propose that an international agreement is needed to determine which is the most suitable method for assessing CTG expansion size in DM1.


Sign in / Sign up

Export Citation Format

Share Document