scholarly journals PbMYB120 Negatively Regulates Anthocyanin Accumulation in Pear

2020 ◽  
Vol 21 (4) ◽  
pp. 1528
Author(s):  
Linyan Song ◽  
Xiaoli Wang ◽  
Wei Han ◽  
Yingying Qu ◽  
Zhigang Wang ◽  
...  

Subgroup 4 R2R3 MYBs play vital roles in the regulation of anthocyanin biosynthesis. However, there is limited knowledge regarding the functions of MYB repressors in pear (Pyrus × bretschneideri). Here, PbMYB120 was identified as a potential regulator of anthocyanin biosynthesis. A phylogenetic analysis revealed that PbMYB120 was clustered into the FaMYB1-like clade of the subgroup 4 R2R3 MYBs. PbMYB120 was expressed higher in red peels than in green peels in five pear cultivars. PbMYB120 expression was positively correlated with anthocyanin accumulation. However, the transient overexpression of PbMYB120 led to the inhibition of anthocyanin accumulation and PbUFGT1 expression. Promoter binding and activation assays indicated that PbMYB120 binds to the promoter of PbUFGT1 and represses the promoter’s activity. Thus, the inhibition of anthocyanin accumulation by PbMYB120 may be correlated with the repression of PbUFGT1. Furthermore, during anthocyanin induction, the expression levels of anthocyanin activators and PbMYB120 were upregulated. This study demonstrated that PbMYB120 was highly expressed in pear tissues having higher anthocyanin accumulations but acted as a repressor in the regulation of anthocyanin accumulation. PbMYB120 may work coordinately with anthocyanin activators and serve as a balancer of anthocyanin accumulation.

Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 231
Author(s):  
Yajing Li ◽  
Xiaofen Liu ◽  
Fang Li ◽  
Lili Xiang ◽  
Kunsong Chen

Anthocyanin is the crucial pigment for the coloration of red chrysanthemum flowers, which synthesizes in the cytosol and is transported to the vacuole for stable storage. In general, glutathione S-transferases (GSTs) play a vital role in this transport. To date, there is no functional GST reported in chrysanthemums. Here, a total of 94 CmGSTs were isolated from the chrysanthemum genome, with phylogenetic analysis suggesting that 16 members of them were clustered into the Phi subgroup which was related to anthocyanin transport. Among them, the expression of CmGST1 was positively correlated with anthocyanin accumulation. Protein sequence alignment revealed that CmGST1 included anthocyanin-related GST-specific amino acid residues. Further transient overexpression experiments in tobacco leaves showed that CmGST1 could promote anthocyanin accumulation. In addition, a dual-luciferase assay demonstrated that CmGST1 could be regulated by CmMYB6, CmbHLH2 and CmMYB#7, which was reported to be related to anthocyanin biosynthesis. Taken together, we suggested that CmGST1 played a key role in anthocyanin transport and accumulation in chrysanthemums.


Plant Disease ◽  
2017 ◽  
Vol 101 (9) ◽  
pp. 1606-1615 ◽  
Author(s):  
Zhen-Hua Cui ◽  
Wen-Lu Bi ◽  
Xin-Yi Hao ◽  
Peng-Min Li ◽  
Ying Duan ◽  
...  

Reddish-purple coloration on the leaf blades and downward rolling of leaf margins are typical symptoms of grapevine leafroll disease (GLD) in red-fruited grapevine cultivars. These typical symptoms are attributed to the expression of genes encoding enzymes for anthocyanins synthesis, and the accumulation of flavonoids in diseased leaves. Drought has been proven to accelerate development of GLD symptoms in virus-infected leaves of grapevine. However, it is not known how drought affects GLD expression nor how anthocyanin biosynthesis in virus-infected leaves is altered. The present study used HPLC to determine the types and levels of anthocyanins, and applied reverse transcription quantitative polymerase chain reaction (RT-qPCR) to analyze the expression of genes encoding enzymes for anthocyanin synthesis. Plantlets of Grapevine leafroll-associated virus 3 (GLRaV-3)-infected Vitis vinifera ‘Cabernet Sauvignon’ were grown in vitro under PEG-induced drought stress. HPLC found no anthocyanin-related peaks in the healthy plantlets with or without PEG-induced stress, while 11 peaks were detected in the infected plantlets with or without PEG-induced drought stress, but the peaks were significantly higher in infected drought-stressed plantlets. Increased accumulation of total anthocyanin compounds was related to the development of GLD symptoms in the infected plantlets under PEG stress. The highest level of up-regulated gene expression was found in GLRaV-3-infected leaves with PEG-induced drought stress. Analyses of variance and correlation of anthocyanin accumulation with related gene expression levels found that GLRaV-3-infection was the key factor in increased anthocyanin accumulation. This accumulation involved the up-regulation of two key genes, MYBA1 and UFGT, and their expression levels were further enhanced by drought stress.


2020 ◽  
Vol 61 (4) ◽  
pp. 826-837 ◽  
Author(s):  
Yang Li ◽  
Pengbo Xu ◽  
Guanqun Chen ◽  
Jun Wu ◽  
Zhongchi Liu ◽  
...  

Abstract Anthocyanin accumulation is transcriptionally regulated by the MYB–bHLH–WD40 complex. Light is indispensable for anthocyanin accumulation, and light-inducible MYB and HY5 were considered to promote anthocyanin accumulation in many fruits. Whether and how light-inducible bHLH transcription factor and HY5 regulate anthocyanin synthesis in strawberry is unknown. In this study, we identified a bHLH transcription factor, FvbHLH9, which was induced by light as well as FvHY5, and found that, similar to FvHY5, the transient overexpression and interference FvbHLH9 in strawberry fruits can promote and decrease anthocyanin accumulation, respectively, indicating FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis. Furthermore, we confirmed that both FvHY5 and FvbHLH9 specifically bind to the promoter region of some key enzyme genes, including FvDFR, and the expression of FvDFR was activated through the heterodimer formation between FvHY5 and FvbHLH9. Finally, we confirmed that FvbHLH9-promoted anthocyanin accumulation is dependent on HY5–bHLH heterodimerisation in Arabidopsis. Our findings provide insights into a mechanism involving the synergistic regulation of light-dependent coloration and anthocyanin biosynthesis via a HY5–bHLH heterodimer formed by the interaction of FvHY5 and FvbHLH9 in strawberry fruits.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 982
Author(s):  
Lisha Zhang ◽  
Xiaomei Sun ◽  
Iain W. Wilson ◽  
Fenjuan Shao ◽  
Deyou Qiu

Taxus chinensis is a precious woody species with significant economic value. Anthocyanin as flavonoid derivatives plays a crucial role in plant biology and human health. However, the genes involved in anthocyanin biosynthesis have not been identified in T. chinensis. In this study, twenty-five genes involved in anthocyanin biosynthesis were identified, including chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, anthocyanidin synthase, flavonoid 3’-hydroxylase, flavonoid 3’,5’-hydroxylase, dihydroflavonol 4-reductase, anthocyanidin reductase, and leucoanthocyanidin reductase. The conserved domains and phylogenetic relationships of these genes were characterized. The expression levels of these genes in different tissues and different ages of xylem were investigated. Additionally, the anthocyanin accumulation in xylem of different ages of T. chinensis was measured. The results showed the anthocyanin accumulation was correlated with the expression levels of dihydroflavonol 4-reductase, anthocyanidin synthase, flavonoid 3’-hydroxylase, and flavonoid 3’,5’-hydroxylase. Our results provide a basis for studying the regulation of the biosynthetic pathway for anthocyanins and wood color formation in T. chinensis.


2020 ◽  
Vol 21 (5) ◽  
pp. 1634
Author(s):  
Xieyu Li ◽  
Ting Wu ◽  
Hanting Liu ◽  
Rui Zhai ◽  
Yao Wen ◽  
...  

Anthocyanin biosynthesis exhibits a rhythmic oscillation pattern in some plants. To investigate the correlation between the oscillatory regulatory network and anthocyanin biosynthesis in pear, the anthocyanin accumulation and the expression patterns of anthocyanin late biosynthetic genes (ALBGs) were investigated in fruit skin of ‘Red Zaosu’ (Pyrus bretschneideri Rehd.). The anthocyanin accumulated mainly during the night over three continuous days in the fruit skin, and the ALBGs’ expression patterns in ‘Red Zaosu’ fruit skin were oscillatory. However, the expression levels of typical anthocyanin-related transcription factors did not follow this pattern. Here, we found that the expression patterns of four PbREVEILLEs (PbRVEs), members of a class of atypical anthocyanin-regulated MYBs, were consistent with those of ALBGs in ‘Red Zaosu’ fruit skin over three continuous days. Additionally, transient expression assays indicated that the four PbRVEs promoted anthocyanin biosynthesis by regulating the expression of the anthocyanin biosynthetic genes encoding dihydroflavonol-4-reductase (DFR) and anthocyanidin synthase (ANS) in red pear fruit skin, which was verified using a dual-luciferase reporter assay. Moreover, a yeast one-hybrid assay indicated that PbRVE1a, 1b and 7 directly bound to PbDFR and PbANS promoters. Thus, PbRVEs promote anthocyanin accumulation at night by up-regulating the expression levels of PbDFR and PbANS in ‘Red Zaosu’ fruit skin.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dongmei Li ◽  
Zhenping Wang ◽  
Sijie Sun ◽  
Kun Xiao ◽  
Minghao Cao ◽  
...  

In most grapevine planting regions, especially in south of China, plenty of rainfall and high water level underground are the characteristic of the area, a series of problem during fruit ripening easily caused poor color quality. Thereby affecting fruit quality, yield and economic benefits. The accumulation of anthocyanin is regulated by transcriptional regulatory factor and a series of cultivation measures, root restriction can make plants in the environment of stress and stress relief, root restriction induced the higher expression of VvMYB15 and VvWRKY40, and consistent with anthocyanin accumulation. Whether and how root restriction-inducible VvMYB15 and VvWRKY40 transcription factor regulate anthocyanin synthesis in grape berry is still unclear. In this study, we identified that the transient overexpression of VvMYB15 and VvWRKY40 alone or both in strawberry fruits and grape berries can promote anthocyanin accumulation and increase the expression level of anthocyanin biosynthetic genes, indicating VvMYB15 and VvWRKY40 play a positive regulator of anthocyanin biosynthesis. Furthermore, we confirmed that both VvMYB15 and VvWRKY40 specifically bind to the promoter region of VvF3′5′H and VvUFGT, and the expression of VvF3′5′H and VvUFGT is further activated through the heterodimer formation between VvMYB15 and VvWRKY40. Finally, we confirmed that VvMYB15 promoted anthocyanin accumulation by interacting with VvWRKY40 in grape berries, our findings provide insights into a mechanism involving the synergistic regulation of root restriction-dependent coloration and biosynthesis via a VvMYB15 and VvWRKY40 alone or both in grape berries.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1477
Author(s):  
Asadullah Khan ◽  
Sanaullah Jalil ◽  
Huan Cao ◽  
Yohannes Tsago ◽  
Mustapha Sunusi ◽  
...  

The anthocyanin biosynthesis attracts strong interest due to the potential antioxidant value and as an important morphological marker. However, the underlying mechanism of anthocyanin accumulation in plant tissues is not clearly understood. Here, a rice mutant with a purple color in the leaf blade, named pl6, was developed from wild type (WT), Zhenong 41, with gamma ray treatment. By map-based cloning, the OsPL6 gene was located on the short arm of chromosome 6. The multiple mutations, such as single nucleotide polymorphism (SNP) at −702, −598, −450, an insertion at −119 in the promoter, three SNPs and one 6-bp deletion in the 5′-UTR region, were identified, which could upregulate the expression of OsPL6 to accumulate anthocyanin. Subsequently, the transcript level of structural genes in the anthocyanin biosynthesis pathway, including OsCHS, OsPAL, OsF3H and OsF3′H, was elevated significantly. Histological analysis revealed that the light attenuation feature of anthocyanin has degraded the grana and stroma thylakoids, which resulted in poor photosynthetic efficiency of purple leaves. Despite this, the photoabatement and antioxidative activity of anthocyanin have better equipped the pl6 mutant to minimize the oxidative damage. Moreover, the contents of abscisic acid (ABA) and cytokanin (CK) were elevated along with anthocyanin accumulation in the pl6 mutant. In conclusion, our results demonstrate that activation of OsPL6 could be responsible for the purple coloration in leaves by accumulating excessive anthocyanin and further reveal that anthocyanin acts as a strong antioxidant to scavenge reactive oxygen species (ROS) and thus play an important role in tissue maintenance.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dan Luo ◽  
Cheng Xiong ◽  
Aihua Lin ◽  
Chunli Zhang ◽  
Wenhui Sun ◽  
...  

AbstractAnthocyanins play vital roles in plant stress tolerance and growth regulation. Previously, we reported that the photomorphogenesis-related transcription factor SlBBX20 regulates anthocyanin accumulation in tomato. However, the underlying mechanism remains unclear. Here, we showed that SlBBX20 promotes anthocyanin biosynthesis by binding the promoter of the anthocyanin biosynthesis gene SlDFR, suggesting that SlBBX20 directly activates anthocyanin biosynthesis genes. Furthermore, we found by yeast two-hybrid screening that SlBBX20 interacts with the COP9 signalosome subunit SlCSN5-2, and the interaction was confirmed by bimolecular fluorescence complementation and coimmunoprecipitation assays. SlCSN5 gene silencing led to anthocyanin hyperaccumulation in the transgenic tomato calli and shoots, and SlCSN5-2 overexpression decreased anthocyanin accumulation, suggesting thSlCSN5-2 enhanced the ubiquitination of SlBBX20 and promoted the degradation of SlBBX20 in vivo. Consistently, silencing the SlCSN5-2 homolog in tobacco significantly increased the accumulation of the SlBBX20 protein. Since SlBBX20 is a vital regulator of photomorphogenesis, the SlBBX20-SlCSN5-2 module may represent a novel regulatory pathway in light-induced anthocyanin biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document