scholarly journals The ArathEULS3 Lectin Ends up in Stress Granules and Can Follow an Unconventional Route for Secretion

2020 ◽  
Vol 21 (5) ◽  
pp. 1659
Author(s):  
Malgorzata Dubiel ◽  
Tibo De De Coninck ◽  
Vinicius Jose Silva Osterne ◽  
Isabel Verbeke ◽  
Daniël Van Van Damme ◽  
...  

Stress granules are cytoplasmic compartments, which serve as mRNA storage units during stress, therefore regulating translation. The Arabidopsis thaliana lectin ArathEULS3 has been widely described as a stress inducible gene. This study aimed to examine in detail the localization of ArathEULS3 lectin in normal and stressed cells. Colocalization experiments revealed that the nucleo-cytoplasmic lectin ArathEULS3 relocates to stress granules after stress. The ArathEULS3 sequence encodes a protein with a EUL lectin domain and an N-terminal domain with unknown structure and function. Bioinformatics analyses showed that the N-terminal domain sequence contains intrinsically disordered regions and likely does not exhibit a stable protein fold. Plasmolysis experiments indicated that ArathEULS3 also localizes to the apoplast, suggesting that this protein might follow an unconventional route for secretion. As part of our efforts we also investigated the interactome of ArathEULS3 and identified several putative interaction partners important for the protein translation process.

Author(s):  
Srinivas Ayyadevara ◽  
Akshatha Ganne ◽  
Meenakshisundaram Balasubramaniam ◽  
Robert J. Shmookler Reis

AbstractA protein’s structure is determined by its amino acid sequence and post-translational modifications, and provides the basis for its physiological functions. Across all organisms, roughly a third of the proteome comprises proteins that contain highly unstructured or intrinsically disordered regions. Proteins comprising or containing extensive unstructured regions are referred to as intrinsically disordered proteins (IDPs). IDPs are believed to participate in complex physiological processes through refolding of IDP regions, dependent on their binding to a diverse array of potential protein partners. They thus play critical roles in the assembly and function of protein complexes. Recent advances in experimental and computational analyses predicted multiple interacting partners for the disordered regions of proteins, implying critical roles in signal transduction and regulation of biological processes. Numerous disordered proteins are sequestered into aggregates in neurodegenerative diseases such as Alzheimer’s disease (AD) where they are enriched even in serum, making them good candidates for serum biomarkers to enable early detection of AD.


Author(s):  
Maryada Sharma ◽  
Naresh K. Panda

Emerging paradigms in interferon (IFN) biology suggest a dynamic INF induced interactome that extends through broader Interferon Stimulated Gene (ISG)- induction, which implicates interferon- ISG coordinated cross-talk with mRNA processing, post-translational modification and metabolic processes that underlie pathological (viral, autoimmune and tumor biology) and physiological (stem cell regenerative pathways) processes. INF immune responses can also be triggered by endogenous host-derived molecules that are generated in response to cellular stress or hemostasis imbalance to establish tissue repair and regeneration in first place, however, overactivation or lack of countermeasures can result in host tissue damage. The proteases are integral to viral and tumor pathology, and importantly serine proteases TMPRSS2 and trypsin have been identified as important molecular determinants underlying COVID-19 pathology, and emergence of coronaviruses cultured in vitro, respectively. We propose that pathogen associated proteases can act as novel stress-inducers to facilitate viral- competent immunomodulation. We term it as Protease Induced Transcriptomic/ epi-Transcriptomic Reshaping (PITTR) of host cells to counter cellular stress. We present a novel experimental model and our preliminary findings of trypsin- primed Caco-2 cells (CPT) that result in translational halt comparable to cells grown under serum-starvation conditions (CSS). CPT at escalating trypsin concentration (CPT- EC) induce upregulation of selective proteins that majorly map to ribosomal, RNA transport, and spliceosome ribonucleoproteins (RNPs). The inclusion of proinflammatory IL1-b to CPT (CPT- IL) resulted in global overexpression of proteins comparable to Caco-2 cells cultured in growth-factor rich serum conditions (CFBS), indicating a likely de-repression of trypsin- induced translational halt. Caco-2 cells display abortive interferon proteome under differential trypsin conditions (CPT, CPT-EC and CPT-IL), which is marked by complete lack of INF generation despite induction of intermediate ISGs, suggestive of protease (trypsin)- dependent regulation of INF response. Viruses regulate the proteome of stress granules (SGs) that are induced to cope transient translational halt as a central adaptive response to pathogen induced cellular stress. The integral components of SGs include non-translating mRNA, ribonucleoproteins (RNPs) and RNA binding proteins (RBPs), which together form biological condensates through a biophysical process involving weak electrostatic interactions through intrinsically disordered regions in RBPs resulting in liquid- liquid phase separation. We compared the CPT- EC proteome to the Mammalian Stress Granules Proteome (MSGP) database to explore potential RBPs that could possibly regulate INF response (and could act as potential anti-viral targets). Notably, differentially upregulated RNPs and potential RBPs from ISG family including ADAR and PRKRA, and RNA helicases implicated in viral pathogenesis were found to be upregulated in the CPT- EC proteome further strengthening the role of proteases (trypsin) in regulating INF pathways independent of the pathogen. We propose that the supplementation of viable SARS-CoV-2 viral loads to trypsin- primed host cells could recapitulate an infectious disease model, which may closely phenocopy pathogen- driven inflammation and signaling events. Based on the global downregulation of seven SERPINS (serine protease inhibitors) linked to thromboinflammation in our LCMS profiling data, we support the candidature of serine protease inhibitors for protease mediated viral pathologies. COVID-19 is increasingly linked to coagulopathy and resemblance to Neutrophil Extracellular Trap (NET) related thromboinflammatory features; SERPIN A1AT (alpha 1 antitrypsin) being a potent neutrophil- elastase inhibitor and a negative regulator of coagulation complement pathway may be a promising candidate for establishing hemostasis rebalancing in COVID-19 pathology.


2021 ◽  
Vol 14 (688) ◽  
pp. eabd2464
Author(s):  
Zahra Nassiri Toosi ◽  
Xinya Su ◽  
Ruth Austin ◽  
Shilpa Choudhury ◽  
Wei Li ◽  
...  

Intrinsically disordered regions (IDRs) in proteins are often targets of combinatorial posttranslational modifications, which serve to regulate protein structure and function. Emerging evidence suggests that the N-terminal tails of G protein γ subunits, which are essential components of heterotrimeric G proteins, are intrinsically disordered, phosphorylation-dependent determinants of G protein signaling. Here, we found that the yeast Gγ subunit Ste18 underwent combinatorial, multisite phosphorylation events within its N-terminal IDR. G protein–coupled receptor (GPCR) activation and osmotic stress induced phosphorylation at Ser7, whereas glucose and acid stress induced phosphorylation at Ser3, which was a quantitative indicator of intracellular pH. Each site was phosphorylated by a distinct set of kinases, and phosphorylation of one site affected phosphorylation of the other, as determined through exposure to serial stimuli and through phosphosite mutagenesis. Last, we showed that phosphorylation resulted in changes in IDR structure and that different combinations of phosphorylation events modulated the activation rate and amplitude of the downstream mitogen-activated protein kinase Fus3. These data place Gγ subunits among intrinsically disordered proteins that undergo combinatorial posttranslational modifications that govern signaling pathway output.


2018 ◽  
Vol 475 (22) ◽  
pp. 3577-3593 ◽  
Author(s):  
Inderjeet Kaur ◽  
Salla Ruskamo ◽  
Jarkko Koivunen ◽  
Ritva Heljasvaara ◽  
Jarkko J. Lackman ◽  
...  

Collagen XVIII (ColXVIII) is a non-fibrillar collagen and proteoglycan that exists in three isoforms: short, medium and long. The medium and long isoforms contain a unique N-terminal domain of unknown function, DUF959, and our sequence-based secondary structure predictions indicated that DUF959 could be an intrinsically disordered domain. Recombinant DUF959 produced in mammalian cells consisted of ∼50% glycans and had a molecular mass of 63 kDa. Circular dichroism spectroscopy confirmed the disordered character of DUF959, and static light scattering indicated a monomeric state for glycosylated DUF959 in solution. Small-angle X-ray scattering showed DUF959 to be a highly extended, flexible molecule with a maximum dimension of ∼23 nm. Glycosidase treatment demonstrated considerable amounts of O-glycosylation, and expression of DUF959 in HEK293 SimpleCells capable of synthesizing only truncated O-glycans confirmed the presence of N-acetylgalactosamine-type O-glycans. The DUF959 sequence is characterized by numerous Ser and Thr residues, and this accounts for the finding that half of the recombinant protein consists of glycans. Thus, the medium and long ColXVIII isoforms contain at their extreme N-terminus a disordered, elongated and highly O-glycosylated mucin-like domain that is not found in other collagens, and we suggest naming it the Mucin-like domain in ColXVIII (MUCL-C18). As intrinsically disordered regions and their post-translational modifications are often involved in protein interactions, our findings may point towards a role of the flexible mucin-like domain of ColXVIII as an interaction hub affecting cell signaling. Moreover, the MUCL-C18 may also serve as a lubricant at cell–extracellular matrix interfaces.


2020 ◽  
Vol 133 (13) ◽  
pp. jcs244657 ◽  
Author(s):  
Mang Zhu ◽  
Erich R. Kuechler ◽  
Joyce Zhang ◽  
Or Matalon ◽  
Benjamin Dubreuil ◽  
...  

2014 ◽  
Vol 28 (2) ◽  
pp. 173-182 ◽  
Author(s):  
S. Stoney Simons ◽  
Dean P. Edwards ◽  
Raj Kumar

Abstract Therapeutic targeting of nuclear receptors (NRs) is presently restricted due to 2 constraints: 1) a limited knowledge of the structural dynamics of intact receptor when complexed to DNA and coregulatory proteins; and 2) the inability to more selectively modulate NR actions at specific organ/gene targets. A major obstacle has been the current lack of understanding about the function and structure of the intrinsically disordered N-terminal domain that contains a major regulatory transcriptional activation function (AF1). Current studies of both mechanism of action and small molecule-selective receptor modulators for clinical uses target the structured pocket of the ligand-binding domain to modulate coregulatory protein interactions with the other activation function AF2. However, these approaches overlook AF1 activity. Recent studies have shown that highly flexible intrinsically disordered regions of transcription factors, including that of the N-terminal domain AF1 of NRs, not only are critical for several aspects of NR action but also can be exploited as drug targets, thereby opening unique opportunities for endocrine-based therapies. In this review article, we discuss the role of structural flexibilities in the allosteric modulation of NR activity and future perspectives for therapeutic interventions.


2002 ◽  
Vol 13 (1) ◽  
pp. 195-210 ◽  
Author(s):  
Nancy Kedersha ◽  
Samantha Chen ◽  
Natalie Gilks ◽  
Wei Li ◽  
Ira J. Miller ◽  
...  

Environmental stress-induced phosphorylation of eIF2α inhibits protein translation by reducing the availability of eIF2-GTP-tRNAiMet, the ternary complex that joins initiator tRNAMet to the 43S preinitiation complex. The resulting untranslated mRNA is dynamically routed to discrete cytoplasmic foci known as stress granules (SGs), a process requiring the related RNA-binding proteins TIA-1 and TIAR. SGs appear to be in equilibrium with polysomes, but the nature of this relationship is obscure. We now show that most components of the 48S preinitiation complex (i.e., small, but not large, ribosomal subunits, eIF3, eIF4E, eIF4G) are coordinately recruited to SGs in arsenite-stressed cells. In contrast, eIF2 is not a component of newly assembled SGs. Cells expressing a phosphomimetic mutant (S51D) of eIF2α assemble SGs of similar composition, confirming that the recruitment of these factors is a direct consequence of blocked translational initiation and not due to other effects of arsenite. Surprisingly, phospho-eIF2α is recruited to SGs that are disassembling in cells recovering from arsenite-induced stress. We discuss these results in the context of a translational checkpoint model wherein TIA and eIF2 are functional antagonists of translational initiation, and in which lack of ternary complex drives SG assembly.


2019 ◽  
Author(s):  
Mang Zhu ◽  
Erich R. Kuechler ◽  
Joyce Zhang ◽  
Or Matalon ◽  
Benjamin Dubreuil ◽  
...  

AbstractHeat-stress triggers the formation of condensates known as stress granules (SGs), which store non-translating mRNA and stalled translation initiation complexes. To gain a better understanding of SGs, we identified yeast proteins that sediment after heat-shock by mass spectrometry. Heat-regulated proteins are biased toward a subset of abundant proteins that are significantly enriched in intrinsically disordered regions (IDRs). SG localization of over 80 heat-regulated proteins was confirmed using microscopy, including 32 proteins that were not known previously to localize to SGs. We find that several IDRs are sufficient to mediate SG recruitment. Moreover, the diffusive exchange of IDRs within SGs, observed via FRAP, can be highly dynamic while other components remain immobile. Lastly, we showed that the IDR of the Ubp3 deubiquitinase is critical for SG formation. This work confirms that IDRs play an important role in cellular compartmentalization upon stress, can be sufficient for SG incorporation, can remain dynamic in vitrified SGs, and play a vital role during heat-stress.SummaryThe authors provide an in-depth proteomic study of yeast heat stress granule (SG) proteins. They identified intrinsic disordered regions (IDRs) as one of the main features shared by these proteins and demonstrated IDRs can be sufficient for SG recruitment.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
László Kaján ◽  
Guy Yachdav ◽  
Esmeralda Vicedo ◽  
Martin Steinegger ◽  
Milot Mirdita ◽  
...  

We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome.


2012 ◽  
Vol 33 (2) ◽  
pp. 271-299 ◽  
Author(s):  
Raj Kumar ◽  
Iain J. McEwan

Steroid hormones are synthesized from cholesterol primarily in the adrenal gland and the gonads and play vital roles in normal physiology, the control of development, differentiation, metabolic homeostasis, and reproduction. The actions of these small lipophilic molecules are mediated by intracellular receptor proteins. It is just over 25 yr since the first cDNA for steroid receptors were cloned, a development that led to the birth of a superfamily of ligand-activated transcription factors: the nuclear receptors. The receptor proteins share structurally and functionally related ligand binding and DNA-binding domains but possess distinct N-terminal domains and hinge regions that are intrinsically disordered. Since the original cloning experiments, considerable progress has been made in our understanding of the structure, mechanisms of action, and biology of this important class of ligand-activated transcription factors. In recent years, there has been interest in the structural plasticity and function of the N-terminal domain of steroid hormone receptors and in the allosteric regulation of protein folding and function in response to hormone, DNA response element architecture, and coregulatory protein binding partners. The N-terminal domain can exist as an ensemble of conformers, having more or less structure, which prime this region of the receptor to rapidly respond to changes in the intracellular environment through hormone binding and posttranslation modifications. In this review, we address the question of receptor structure and function dynamics with particular emphasis on the structurally flexible N-terminal domain, intra- and interdomain communications, and the allosteric regulation of receptor action.


Sign in / Sign up

Export Citation Format

Share Document