scholarly journals Early Detection of Pancreatic Intraepithelial Neoplasias (PanINs) in Transgenic Mouse Model by Hyperpolarized 13C Metabolic Magnetic Resonance Spectroscopy

2020 ◽  
Vol 21 (10) ◽  
pp. 3722
Author(s):  
Prasanta Dutta ◽  
Susana Castro Pando ◽  
Marilina Mascaro ◽  
Erick Riquelme ◽  
Michelle Zoltan ◽  
...  

While pancreatic cancer (PC) survival rates have recently shown modest improvement, the disease remains largely incurable. Early detection of pancreatic cancer may result in improved outcomes and therefore, methods for early detection of cancer, even premalignant lesions, may provide more favorable outcomes. Pancreatic intraepithelial neoplasias (PanINs) have been identified as premalignant precursor lesions to pancreatic cancer. However, conventional imaging methods used for screening high-risk populations do not have the sensitivity to detect PanINs. Here, we have employed hyperpolarized metabolic imaging in vivo and nuclear magnetic resonance (1H-NMR) metabolomics ex vivo to identify and understand metabolic changes, towards enabling detection of early PanINs and progression to advanced PanINs lesions that precede pancreatic cancer formation. Progression of disease from tissue containing predominantly low-grade PanINs to tissue with high-grade PanINs showed a decreasing alanine/lactate ratio from high-resolution NMR metabolomics ex vivo. Hyperpolarized magnetic resonance spectroscopy (HP-MRS) allows over 10,000-fold sensitivity enhancement relative to conventional magnetic resonance. Real-time HP-MRS was employed to measure non-invasively changes of alanine and lactate metabolites with disease progression and in control mice in vivo, following injection of hyperpolarized [1-13C] pyruvate. The alanine-to-lactate signal intensity ratio was found to decrease as the disease progressed from low-grade PanINs to high-grade PanINs. The biochemical changes of alanine transaminase (ALT) and lactate dehydrogenase (LDH) enzyme activity were assessed. These results demonstrate that there are significant alterations of ALT and LDH activities during the transformation from early to advanced PanINs lesions. Furthermore, we demonstrate that real-time conversion kinetic rate constants (kPA and kPL) can be used as metabolic imaging biomarkers of pancreatic premalignant lesions. Findings from this emerging HP-MRS technique can be translated to the clinic for detection of pancreatic premalignant lesion in high-risk populations.

2021 ◽  
Vol 10 ◽  
Author(s):  
Marie-France Penet ◽  
Samata Kakkad ◽  
Flonné Wildes ◽  
Zaver M. Bhujwalla

In magnetic resonance metabolic imaging, signal from the water content is frequently used for normalization to derive quantitative or semi-quantitative values of metabolites in vivo or ex vivo tumors and tissues. Ex vivo high-resolution metabolic characterization of tumors with magnetic resonance spectroscopy (MRS) provides valuable information that can be used to drive the development of noninvasive MRS biomarkers and to identify metabolic therapeutic targets. Variability in the water content between tumor and normal tissue can result in over or underestimation of metabolite concentrations when assuming a constant water content. Assuming a constant water content can lead to masking of differences between malignant and normal tissues both in vivo and ex vivo. There is a critical need to develop biomarkers to detect pancreatic cancer and to develop novel treatments. Our purpose here was to determine the differences in water content between pancreatic tumors and normal pancreatic tissue as well as other organs to accurately quantify metabolic differences when using the water signal for normalization. Our data identify the importance of factoring the differences in water content between tumors and organs. High-resolution proton spectra of tumors and pancreatic tissue extracts normalized to the water signal, assuming similar water content, did not reflect the significantly increased total choline observed in tumors in vivo without factoring the differences in water content. We identified significant differences in the collagen 1 content between Panc1 and BxPC3 pancreatic tumors and the pancreas that can contribute to the differences in water content that were observed.


2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i2-i2
Author(s):  
Georgios Batsios ◽  
Celine Taglang ◽  
Meryssa Tran ◽  
Anne Marie Gillespie ◽  
Joseph Costello ◽  
...  

Abstract Telomere shortening constitutes a natural barrier to uncontrolled proliferation and all tumors must find a mechanism of maintaining telomere length. Most human tumors, including high-grade primary glioblastomas (GBMs) and low-grade oligodendrogliomas (LGOGs) achieve telomere maintenance via reactivation of the expression of telomerase reverse transcriptase (TERT), which is silenced in normal somatic cells. TERT expression is, therefore, a driver of tumor proliferation and, due to this essential role, TERT is also a therapeutic target. However, non-invasive methods of imaging TERT are lacking. The goal of this study was to identify magnetic resonance spectroscopy (MRS)-detectable metabolic biomarkers of TERT expression that will enable non-invasive visualization of tumor burden in LGOGs and GBMs. First, we silenced TERT expression by RNA interference in patient-derived LGOG (SF10417, BT88) and GBM (GS2) models. Our results linked TERT silencing to significant reductions in steady-state levels of NADH in all models. NADH is essential for the conversion of pyruvate to lactate, suggesting that measuring pyruvate flux to lactate could be useful for imaging TERT status. Recently, deuterium (2H)-MRS has emerged as a novel, clinically translatable method of monitoring metabolic fluxes in vivo. However, to date, studies have solely examined 2H-glucose and the use of [U-2H]pyruvate for non-invasive 2H-MRS has not been tested. Following intravenous injection of a bolus of [U-2H]pyruvate, lactate production was higher in mice bearing orthotopic LGOG (BT88 and SF10417) and GBM (GS2) tumor xenografts relative to tumor-free mice, suggesting that [U-2H]pyruvate has the potential to monitor TERT expression in vivo. In summary, our study, for the first time, shows the feasibility and utility of [U-2H]pyruvate for in vivo imaging. Importantly, since 2H-MRS can be implemented on clinical scanners, our results provide a novel, non-invasive method of integrating information regarding a fundamental cancer hallmark, i.e. TERT, into glioma patient management.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 360
Author(s):  
Omkar B. Ijare ◽  
Martyn A. Sharpe ◽  
David S. Baskin ◽  
Kumar Pichumani

Background: Rathke’s Cleft Cysts (RCCs) are rare epithelial cysts arising from remnants of the Rathke pouch in the pituitary gland. A subset of these lesions enlarge and produce a mass effect with consequent hypopituitarism, and may result in visual loss. Moreover, some RCCs with a high intra-cystic protein content may mimic cystic pituitary adenoma, which makes their differential diagnosis ambiguous. Currently, medical professionals have no definitive way to distinguish RCCs from pituitary adenomas. Therefore, preoperative confirmation of RCCs would be of help to medical professionals for the management and proper surgical decision making. The goal of this study is to identify molecular markers in RCCs. Methods: We characterized aqueous and chloroform extracts of surgically resected RCCs and pituitary adenomas using ex vivo 1H NMR spectroscopy. Results: All RCCs exclusively showed the presence of mucopolysaccharides which are glycosaminoglycans (GAGs) made up of disaccharides of aminosugars and uronic sugars. Conclusion: GAGs can be used as metabolite marker for the detection of RCCs and this knowledge will lay the groundwork for the development of a non-invasive, in vivo magnetic resonance spectroscopy methodology for the differential diagnosis of RCCs and pituitary adenomas using clinical MRI scanners.


2014 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Girolamo Crisi ◽  
Silvano Filice ◽  
Thelma A. Pertinhez ◽  
Elisa Ventura ◽  
Franco Servadei

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi42-vi42
Author(s):  
Pavithra Viswanath ◽  
Georgios Batsios ◽  
Anne Marie Gillespie ◽  
Russell O Pieper ◽  
Sabrina Ronen

Abstract Telomerase reverse transcriptase (TERT) expression is a hallmark of cancer, including in primary glioblastomas and low-grade oligodendrogliomas. Since TERT is essential for glioma proliferation and is an attractive therapeutic target, metabolic imaging of TERT status can inform on tumor progression and response to therapy. To that end, the goal of this study was to identify non-invasive, translational, hyperpolarized 13C-magnetic resonance spectroscopy-detectable metabolic imaging biomarkers of TERT in low-grade oligodendrogliomas. Unbiased metabolomic analysis of immortalized normal human astrocytes without (NHAcontrol) and with TERT (NHAtert) indicated that TERT induced unique metabolic reprogramming. Notably, TERT increased NADPH and NADH levels. Glucose flux through the pentose phosphate pathway (PPP) is a major producer of NADPH. Non-invasive imaging of PPP flux using hyperpolarized [U-13C,U-2H]-glucose indicated that production of the PPP metabolite 6-phosphogluconate (6-PG) was elevated in NHAtert cells relative to NHAcontrol. Importantly, hyperpolarized [U-13C,U-2H]-glucose flux to 6-PG clearly differentiated tumor from normal brain in orthotopic NHAtert tumor xenografts. Next, we exploited the observation that TERT expression increased NADH, which is essential for the metabolism of hyperpolarized [1-13C]-alanine to lactate. Lactate production from hyperpolarized [1-13C]-alanine was higher in NHAtert cells relative to NHAcontrol. Importantly, hyperpolarized [1-13C]-alanine imaging in orthotopic NHAtert tumors revealed pronounced differences in lactate production between tumor tissue and normal brain. Mechanistically, TERT increased expression of glucose-6-phosphate dehydrogenase (G6PDH), the rate-limiting enzyme for 6-PG and NADPH production, and of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting enzyme for NADH biosynthesis. Silencing TERT reversed G6PDH and NAMPT expression and normalized hyperpolarized [U-13C,U-2H]-glucose and [1-13C]-alanine metabolism, validating our imaging biomarkers. Finally, hyperpolarized [U-13C,U-2H]-glucose and [1-13C]-alanine could monitor TERT status in the clinically relevant, patient-derived BT54 oligodendroglioma model. In summary, we demonstrate, for the first time, non-invasive in vivo imaging of TERT status in gliomas that can enable longitudinal analysis of tumor burden and treatment response in the clinic.


Sign in / Sign up

Export Citation Format

Share Document