scholarly journals Characterization of CD4-Positive Lymphocytes in the Antiviral Response of Olive Flounder (Paralichthys oliveceus) to Nervous Necrosis Virus

2020 ◽  
Vol 21 (11) ◽  
pp. 4180
Author(s):  
Jae Wook Jung ◽  
Jin Hong Chun ◽  
Jung Seok Lee ◽  
Si Won Kim ◽  
Ae Rin Lee ◽  
...  

The presence of CD4 T lymphocytes has been described for several teleost species, while many of the main T cell subsets have not been characterized at a cellular level, because of a lack of suitable tools for their identification, e.g., monoclonal antibodies (mAbs) against cell markers. We previously described the tissue distribution and immune response related to CD3ε and CD4-1 T cells in olive flounder (Paralichthys oliveceus) in response to a viral infection. In the present study, we successfully produce an mAb against CD4-2 T lymphocytes from olive flounder and confirmed its specificity using immuno-blotting, immunofluorescence staining, flow cytometry analysis and reverse transcription polymerase chain reaction (RT-PCR). Using these mAbs, we were able to demonstrate that the CD3ε T cell populations contain both types of CD4+ cells, with the majority of the CD4 T cell subpopulations being CD4-1+/CD4-2+ cells, determined using two-color flow cytometry analysis. We also examined the functional activity of the CD4-1 and CD4-2 cells in vivo in response to a viral infection, with the numbers of both types of CD4 T cells increasing significantly during the virus infection. Collectively, these findings suggest that the CD4 T lymphocytes in olive flounder are equivalent to the helper T cells in mammals in terms of their properties and function, and it is the CD4-2 T lymphocytes rather than the CD4-1 T cells that play an important role in the Th1 immune response against viral infections in olive flounder.

2020 ◽  
Vol 8 (Suppl 2) ◽  
pp. A47.2-A48
Author(s):  
E Criado-Moronati ◽  
A Gosselink ◽  
J Kollet ◽  
A Dzionek ◽  
B Heemskerk

BackgroundThe adoptive cell transfer (ACT) of tumor-infiltrating T lymphocytes (TILs) has shown remarkable results in patients with different cancer types. The antitumor effect of this therapy is mainly attributed to a small fraction of tumor-reactive T lymphocytes (TRLs) that recognize mutated peptides as well as overexpressed self-antigens. Therefore, the enrichment and expansion of TRLs constitutes a promising immunotherapy approach. However, the specific targeting of individual mutated antigens represents a daunting challenge for widespread therapeutic application. Alternatively, we hypothesize that TRLs could be identified and enriched by a surface marker (or combination thereof) in an antigen-independent manner as a result of the chronic antigen exposure and other factors present in the tumor microenvironment (TME).Materials and MethodsWe screened T cell activation and exhaustion markers, among others, on different tumor tissues using the MACSima™ Imaging Platform, an instrument for the highly multiplexed immunofluorescence imaging technology MICS (Multiparameter Imaging Cell Screen), enabling investigation of hundreds of markers on a single section. Moreover, flow cytometry and single-cell RNA sequencing analyses of T cells from tumor digests were performed to complement the characterization of TILs.ResultsThe MICS results highlighted the complexity of the TME, mainly composed of tumor cells, fibroblasts and endothelial vessels. In some cases, an extensive immune infiltrate consisted of T cells, plasma cells, some B cells and distinct myeloid cells was observed. Particularly, CD8 T cells from different tumor areas exhibited a tissue-resident memory phenotype with the expression of CD69, CD45RO or CD103. Activated/exhausted CD8 T cells were homogenously found across the imaged tumor areas. However, there was a tendency to find them in close proximity to tumor cells, especially for CD8 subsets expressing CD39 and other relevant markers, which may suggest the identification of tumor-reactive CD8 T cell populations. Flow cytometry data revealed the presence of similar T cell phenotypes in the patient´s TILs from tumor digests.ConclusionsThis imaging technology offers the possibility to study multiple parameters—including the localization—of relevant cells in the TME such as T cells. The phenotypic and functional characterization of different T cell subsets will allow the further investigation of their anti-tumor reactivity. Ultimately, the enrichment and expansion of the identified tumor-reactive T cell population hold great promises to improve the efficiency of T cell therapy against cancer.Disclosure InformationE. Criado-Moronati: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG. A. Gosselink: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG. J. Kollet: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG. A. Dzionek: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG. B. Heemskerk: A. Employment (full or part-time); Significant; Miltenyi Biotec B.V. & Co. KG.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yefei Huang ◽  
Xinyu Wu ◽  
Lian Gui ◽  
Yutong Jiang ◽  
Liudan Tu ◽  
...  

ObjectiveGout is a chronic disease characterized by the deposition of monosodium urate (MSU) crystals in tissue. Study with a focus on adaptive immune response remains to be understood although innate immune response has been reported extensively in gout etiology. Our study attempted to investigate the association of gout-related immune cell imbalance with clinical features and comorbidity with renal impairment and the implicated pathogenesis via the assessment of T and B cell subsets in different activity phases or with immune effects combined with the analyses of clinical parameters.MethodsFifty-eight gout patients and 56 age- and sex-matched healthy individuals were enrolled. To learn the roles of circulating T cells, a lymphocyte profile incorporating 32 T cell subsets was tested from isolated freshly peripheral blood monocyte cells (PBMCs) with multiple-color flow cytometry. Furthermore, the collected clinical features of participants were used to analyze the characteristics of these differential cell subsets. Stratified on the basis of the level of creatinine (Cr, enzymatic method), all patients were categorized into Crlow (Cr ≤ 116 μmol/L) and Crhi (Cr > 116 μmol/L) groups to exploit whether these gout-associated T cell subsets were functional in gout-targeted kidney dysfunction. The differentiation of B cells was investigated in gout patients.ResultsOur results show that CD 4+ T cells, Th2 cells, and Tc2 cells were upregulated, whereas Tc17 cells were downregulated. Tfh cells skewed toward the polarization of Tfh2 cells. Specifically, Tfh2 cells increased, but Tfh1 cells decreased, accompanied with aging for gout patients, suggesting that age might trigger the skewing of Tfh1/Tfh2 cell subsets to influence gout development. Moreover, Tfh2 cells were connected to renal dysfunction as well. No alterations of B cell subsets were observed in patients when compared to controls.ConclusionsOur data demonstrate age-specific dysfunctions of Tfh1/2 cells in gout occurrence, and Tfh2 cell upregulation is associated with gout-targeted renal dysfunction. However, Tfh2 cells may function in auto-inflammatory gout independent of helping B differentiation, and an in-depth study remains to be conducted.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hannah-Lou Schilling ◽  
Gunther Glehr ◽  
Michael Kapinsky ◽  
Norbert Ahrens ◽  
Paloma Riquelme ◽  
...  

Treatment of advanced melanoma with combined immune checkpoint inhibitor (ICI) therapy is complicated in up to 50% of cases by immune-related adverse events (irAE) that commonly include hepatitis, colitis and skin reactions. We previously reported that pre-therapy expansion of cytomegalovirus (CMV)-reactive CD4+ effector memory T cells (TEM) predicts ICI-related hepatitis in a subset of patients with Stage IV melanoma given αPD-1 and αCTLA-4. Here, we develop and validate a 10-color flow cytometry panel for reliably quantifying CD4+ TEM cells and other biomarkers of irAE risk in peripheral blood samples. Compared to previous methods, our new panel performs equally well in measuring CD4+ TEM cells (agreement = 98%) and is superior in resolving CD4+ CD197+ CD45RA- central memory T cells (TCM) from CD4+ CD197+ CD45RA+ naive T cells (Tnaive). It also enables us to precisely quantify CD14+ monocytes (CV = 6.6%). Our new “monocyte and T cell” (MoT) assay predicts immune-related hepatitis with a positive predictive value (PPV) of 83% and negative predictive value (NPV) of 80%. Our essential improvements open the possibility of sharing our predictive methods with other clinical centers. Furthermore, condensing measurements of monocyte and memory T cell subsets into a single assay simplifies our workflows and facilitates computational analyses.


Author(s):  
Kristen Orumaa ◽  
Margaret R. Dunne

AbstractCOVID-19 is a respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first documented in late 2019, but within months, a worldwide pandemic was declared due to the easily transmissible nature of the virus. Research to date on the immune response to SARS-CoV-2 has focused largely on conventional B and T lymphocytes. This review examines the emerging role of unconventional T cell subsets, including γδ T cells, invariant natural killer T (iNKT) cells and mucosal associated invariant T (MAIT) cells in human SARS-CoV-2 infection.Some of these T cell subsets have been shown to play protective roles in anti-viral immunity by suppressing viral replication and opsonising virions of SARS-CoV. Here, we explore whether unconventional T cells play a protective role in SARS-CoV-2 infection as well. Unconventional T cells are already under investigation as cell-based immunotherapies for cancer. We discuss the potential use of these cells as therapeutic agents in the COVID-19 setting. Due to the rapidly evolving situation presented by COVID-19, there is an urgent need to understand the pathogenesis of this disease and the mechanisms underlying its immune response. Through this, we may be able to better help those with severe cases and lower the mortality rate by devising more effective vaccines and novel treatment strategies.


1983 ◽  
Vol 158 (2) ◽  
pp. 571-585 ◽  
Author(s):  
A Moretta ◽  
G Pantaleo ◽  
L Moretta ◽  
M C Mingari ◽  
J C Cerottini

In order to directly assess the distribution of cytolytic T lymphocytes (CTL) and their precursors (CTL-P) in the two major subsets of human T cells, we have used limiting dilution microculture systems to determine their frequencies. The two subsets were defined according to their reactivity (or lack thereof) with B9.4 monoclonal antibody (the specificity of which is similar, if not identical, to that of Leu 2b monoclonal antibody). Both B9+ and B9- cells obtained by sorting peripheral blood resting T cells using the fluorescence-activated cell sorter (FACS) were assayed for total CTL-P frequencies in a microculture system that allows clonal growth of every T cell. As assessed by a lectin-dependent assay, approximately 30% of peripheral blood T cells were CTP-P. In the B9+ subset (which represents 20-30% of all T cells), the CTL-P frequency was close to 100%, whereas the B9- subset had a 25-fold lower CTL-P frequency. It is thus evident that 90% and 10% of the total CTL-P in peripheral blood are confined to the B9+ or B9- T cell subsets, respectively. Analysis of the subset distribution of CTL-P directed against a given set of alloantigens confirmed these findings. CTL-P frequencies were also determined in B9+ and B9- subsets derived from T cells that had been activated in allogenic mixed leucocyte cultures (MLC). Approximately 10% of MLC T cells were CTL-P. This frequency was increased 3.5-fold in the B9+ subset, whereas the B9- subset contained only a small, although detectable number of CTL-P. Moreover, the great majority of the (operationally defined) CTL-P in MLC T cell population were found to be directed against the stimulating alloantigens, thus indicating a dramatic increase in specific CTL-P frequencies following in vitro stimulation in bulk cultures.


Cytometry ◽  
1995 ◽  
Vol 21 (2) ◽  
pp. 187-196 ◽  
Author(s):  
M. Roederer ◽  
M. Bigos ◽  
T. Nozaki ◽  
R. T. Stovel ◽  
D. R. Parks ◽  
...  

2021 ◽  
Author(s):  
Aline Teixeira ◽  
Alexandria Gillespie ◽  
Alehegne Yirsaw ◽  
Emily Britton ◽  
Janice Telfer ◽  
...  

Pathogenic Leptospira species cause leptospirosis, a neglected zoonotic disease recognized as a global public health problem. It is also the cause of the most common cattle infection that results in major economic losses due to reproductive problems. γδ T cells play a role in the protective immune response in livestock species against Leptospira while human γδ T cells also respond to Leptospira. Thus, activation of γδ T cells has emerged as a potential component for optimization of vaccine strategies. Bovine γδ T cells proliferate and produce IFN-γ in response to vaccination with inactivated leptospires and this response is mediated by a specific subpopulation of the WC1-bearing γδ T cells. WC1 molecules are members of the group B scavenger receptor cysteine rich (SRCR) superfamily and are composed of multiple SRCR domains, of which particular extracellular domains act as ligands for Leptospira. Since WC1 molecules function as both pattern recognition receptors and γδ TCR coreceptors, the WC1 system has been proposed as a novel target to engage γδ T cells. Here, we demonstrate the involvement of leptospiral protein antigens in the activation of WC1+ γδ T cells and identified two leptospiral outer membrane proteins able to interact directly with them. Interestingly, we show that the protein-specific γδ T cell response is composed of WC1.1+ and WC1.2+ subsets, although a greater number of WC1.1+ γδ T cells respond. Identification of protein antigens will enhance our understanding of the role γδ T cells play in the leptospiral immune response and in recombinant vaccine development.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Kristine M Wadosky ◽  
Sri N Batchu ◽  
Angie Hughson ◽  
Kathy Donlon ◽  
Craig N Morrell ◽  
...  

Introduction: Our laboratory has shown that Axl, a receptor tyrosine kinase, is important in both vascular and immune functions during deoxycorticosterone acetate (DOCA)-salt hypertension. We hypothesized that Axl activity specifically in T lymphocytes could explain the dependence of hypertension on Axl. Methods and Results: We did adoptive transfers of either Axl+/+ or Axl-/- CD4+ T cells to RAG1-/- mice that lack mature T cells. Once CD4+ T cell repopulations were confirmed, we induced DOCA-salt hypertension for 6 weeks. Systolic blood pressure (BP, mmHg) increased by 20±5 in Axl+/+RAG-/- mice after DOCA-salt, but Axl-/- RAG-/- mice had increases in BP by only 6+3 after 6 weeks of DOCA-salt. We isolated naïve CD4+ T cells from both Axl+/+ and Axl-/- littermates and primed them under either Th1 or Th2 polarizing conditions in culture. Production of interferon gamma (IFN-γ ng/mL) was significantly decreased (-23%, p<0.05) in Axl-/- (396±23) compared to Axl+/+ (512±42) under Th1-priming. However, Axl had no effect on interleukin 4 (IL-4, ng/mL) production under Th2 polarizing conditions. Intracellular staining of the Th1/Th2 cells with IFN-γ and IL-4 antibodies by flow cytometry confirmed expression of cytokines in culture media. Complete blood counts showed that Axl-/- mice had significantly lower white blood cells due to decreased numbers of lymphocytes (4.5±0.7x10 9 ) compared to Axl+/+ mice (7.8±0.7x10 9 ). We found a higher population of AnnexinV (marker of early apoptosis)-positive peripheral leukocytes in Axl-/- mice (10±1%) compared to Axl+/+ (4±1%) by flow cytometry; while the percentages of dead cells (~10%) were similar between Axl+/+ and Axl-/- mice. Conclusions: Altogether we show that expression of Axl by T cells drives salt-induced hypertension. The mechanism of Axl-dependent effects on T cells occurs via T-cell-dependent expression of the pro-inflammatory cytokine IFN-γ. In addition, Axl plays a role in inhibiting lymphocyte apoptosis in the circulation. Future work will focus on how Axl expression in T cells affects T cell-dependent vascular remodeling during hypertension.


2019 ◽  
Vol 116 (6) ◽  
pp. 2312-2317 ◽  
Author(s):  
Emmanuelle Coque ◽  
Céline Salsac ◽  
Gabriel Espinosa-Carrasco ◽  
Béla Varga ◽  
Nicolas Degauque ◽  
...  

Adaptive immune response is part of the dynamic changes that accompany motoneuron loss in amyotrophic lateral sclerosis (ALS). CD4+T cells that regulate a protective immunity during the neurodegenerative process have received the most attention. CD8+T cells are also observed in the spinal cord of patients and ALS mice although their contribution to the disease still remains elusive. Here, we found that activated CD8+T lymphocytes infiltrate the central nervous system (CNS) of a mouse model of ALS at the symptomatic stage. Selective ablation of CD8+T cells in mice expressing the ALS-associated superoxide dismutase-1 (SOD1)G93Amutant decreased spinal motoneuron loss. Using motoneuron-CD8+T cell coculture systems, we found that mutant SOD1-expressing CD8+T lymphocytes selectively kill motoneurons. This cytotoxicity activity requires the recognition of the peptide-MHC-I complex (where MHC-I represents major histocompatibility complex class I). Measurement of interaction strength by atomic force microscopy-based single-cell force spectroscopy demonstrated a specific MHC-I-dependent interaction between motoneuron andSOD1G93ACD8+T cells. Activated mutant SOD1 CD8+T cells produce interferon-γ, which elicits the expression of the MHC-I complex in motoneurons and exerts their cytotoxic function through Fas and granzyme pathways. In addition, analysis of the clonal diversity of CD8+T cells in the periphery and CNS of ALS mice identified an antigen-restricted repertoire of their T cell receptor in the CNS. Our results suggest that self-directed immune response takes place during the course of the disease, contributing to the selective elimination of a subset of motoneurons in ALS.


Sign in / Sign up

Export Citation Format

Share Document