scholarly journals Proteomic Screening for Prediction and Design of Antimicrobial Peptides with AmpGram

2020 ◽  
Vol 21 (12) ◽  
pp. 4310 ◽  
Author(s):  
Michał Burdukiewicz ◽  
Katarzyna Sidorczuk ◽  
Dominik Rafacz ◽  
Filip Pietluch ◽  
Jarosław Chilimoniuk ◽  
...  

Antimicrobial peptides (AMPs) are molecules widespread in all branches of the tree of life that participate in host defense and/or microbial competition. Due to their positive charge, hydrophobicity and amphipathicity, they preferentially disrupt negatively charged bacterial membranes. AMPs are considered an important alternative to traditional antibiotics, especially at the time when multidrug-resistant bacteria being on the rise. Therefore, to reduce the costs of experimental research, robust computational tools for AMP prediction and identification of the best AMP candidates are essential. AmpGram is our novel tool for AMP prediction; it outperforms top-ranking AMP classifiers, including AMPScanner, CAMPR3R and iAMPpred. It is the first AMP prediction tool created for longer AMPs and for high-throughput proteomic screening. AmpGram prediction reliability was confirmed on the example of lactoferrin and thrombin. The former is a well known antimicrobial protein and the latter a cryptic one. Both proteins produce (after protease treatment) functional AMPs that have been experimentally validated at molecular level. The lactoferrin and thrombin AMPs were located in the antimicrobial regions clearly detected by AmpGram. Moreover, AmpGram also provides a list of shot 10 amino acid fragments in the antimicrobial regions, along with their probability predictions; these can be used for further studies and the rational design of new AMPs. AmpGram is available as a web-server, and an easy-to-use R package for proteomic analysis at CRAN repository.

mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Hye-Ra Lee ◽  
Deok-gyun You ◽  
Hong Kyu Kim ◽  
Jang Wook Sohn ◽  
Min Ja Kim ◽  
...  

ABSTRACT To overcome increasing bacterial resistance to conventional antibiotics, many antimicrobial peptides (AMPs) derived from host defense proteins have been developed. However, there are considerable obstacles to their application to systemic infections because of their low bioavailability. In the present study, we developed an AMP derived from Romo1 (AMPR-11) that exhibits a broad spectrum of antimicrobial activity. AMPR-11 showed remarkable efficacy against sepsis-causing bacteria, including multidrug-resistant strains, with low toxicity in a murine model of sepsis after intravenous administration. It seems that AMPR-11 disrupts bacterial membranes by interacting with cardiolipin and lipid A. From the results of this study, we suggest that AMPR-11 is a new class of agent for overcoming low efficacy in the intravenous application of AMPs and is a promising candidate to overcome multidrug resistance. IMPORTANCE Abuse of antibiotics often leads to increase of multidrug-resistant (MDR) bacteria, which threatens the life of human beings. To overcome threat of antibiotic resistance, scientists are developing a novel class of antibiotics, antimicrobial peptides, that can eradicate MDR bacteria. Unfortunately, these antibiotics have mainly been developed to cure bacterial skin infections rather than others, such as life-threatening sepsis. Major pharmaceutical companies have tried to develop antiseptic drugs; however, they have not been successful. Here, we report that AMPR-11, the antimicrobial peptide (AMP) derived from mitochondrial nonselective channel Romo1, has antimicrobial activity against Gram-positive and Gram-negative bacteria comprising many clinically isolated MDR strains. Moreover, AMPR-11 increased the survival rate in a murine model of sepsis caused by MDR bacteria. We propose that AMPR-11 could be a novel antiseptic drug candidate with a broad antimicrobial spectrum to overcome MDR bacterial infection.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Guangchao Qing ◽  
Xianxian Zhao ◽  
Ningqiang Gong ◽  
Jing Chen ◽  
Xianlei Li ◽  
...  

Abstract New strategies with high antimicrobial efficacy against multidrug-resistant bacteria are urgently desired. Herein, we describe a smart triple-functional nanostructure, namely TRIDENT (Thermo-Responsive-Inspired Drug-Delivery Nano-Transporter), for reliable bacterial eradication. The robust antibacterial effectiveness is attributed to the integrated fluorescence monitoring and synergistic chemo-photothermal killing. We notice that temperature rises generated by near-infrared irradiation did not only melt the nanotransporter via a phase change mechanism, but also irreversibly damaged bacterial membranes to facilitate imipenem permeation, thus interfering with cell wall biosynthesis and eventually leading to rapid bacterial death. Both in vitro and in vivo evidence demonstrate that even low doses of imipenem-encapsulated TRIDENT could eradicate clinical methicillin-resistant Staphylococcus aureus, whereas imipenem alone had limited effect. Due to rapid recovery of infected sites and good biosafety we envision a universal antimicrobial platform to fight against multidrug-resistant or extremely drug-resistant bacteria.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 652 ◽  
Author(s):  
Angela Di Somma ◽  
Antonio Moretta ◽  
Carolina Canè ◽  
Arianna Cirillo ◽  
Angela Duilio

The increasing onset of multidrug-resistant bacteria has propelled microbiology research towards antimicrobial peptides as new possible antibiotics from natural sources. Antimicrobial peptides are short peptides endowed with a broad range of activity against both Gram-positive and Gram-negative bacteria and are less prone to trigger resistance. Besides their activity against planktonic bacteria, many antimicrobial peptides also show antibiofilm activity. Biofilms are ubiquitous in nature, having the ability to adhere to virtually any surface, either biotic or abiotic, including medical devices, causing chronic infections that are difficult to eradicate. The biofilm matrix protects bacteria from hostile environments, thus contributing to the bacterial resistance to antimicrobial agents. Biofilms are very difficult to treat, with options restricted to the use of large doses of antibiotics or the removal of the infected device. Antimicrobial peptides could represent good candidates to develop new antibiofilm drugs as they can act at different stages of biofilm formation, on disparate molecular targets and with various mechanisms of action. These include inhibition of biofilm formation and adhesion, downregulation of quorum sensing factors, and disruption of the pre-formed biofilm. This review focuses on the proprieties of antimicrobial and antibiofilm peptides, with a particular emphasis on their mechanism of action, reporting several examples of peptides that over time have been shown to have activity against biofilm.


2007 ◽  
Vol 2 (1) ◽  
pp. 1-33 ◽  
Author(s):  
Andrea Giuliani ◽  
Giovanna Pirri ◽  
Silvia Nicoletto

AbstractAntibiotic resistance is increasing at a rate that far exceeds the pace of new development of drugs. Antimicrobial peptides, both synthetic and from natural sources, have raised interest as pathogens become resistant against conventional antibiotics. Indeed, one of the major strengths of this class of molecules is their ability to kill multidrug-resistant bacteria. Antimicrobial peptides are relatively small (6 to 100 aminoacids), amphipathic molecules of variable length, sequence and structure with activity against a wide range of microorganisms including bacteria, protozoa, yeast, fungi, viruses and even tumor cells. They usually act through relatively non-specific mechanisms resulting in membranolytic activity but they can also stimulate the innate immune response. Several peptides have already entered pre-clinical and clinical trials for the treatment of catheter site infections, cystic fibrosis, acne, wound healing and patients undergoing stem cell transplantation. We review the advantages of these molecules in clinical applications, their disadvantages including their low in vivo stability, high costs of production and the strategies for their discovery and optimization.


2018 ◽  
Vol 18 (4) ◽  
pp. 47-57
Author(s):  
Maria Sergeyevna Zharkova ◽  
Ekaterina S. Umnyakova ◽  
Anna G. Afinogenova ◽  
Gennady E. Afinogenov ◽  
Aleksandr A. Kolobov ◽  
...  

We investigated the combined effects of antimicrobial peptides PG-1 and ChBac3.4 with antiseptics (sodium hypochlorite, dioxidine, prontosan, poviargolum, and etidronic acid) to identify combinations that display synergistic antimicrobial activity against antibiotic-resistant bacteria. We used the checker-board titration method to calculate fractional inhibitory concentration indices, and based on the indices the type of combined action was determined. The combined effect on the metabolic activity of bacteria was evaluated using the fluorescent marker resazurin, and the effect on the permeability of bacterial membranes for chromogenic markers was studied spectrophotometrically. The combined hemolytic activity of the combinations was investigated. Sodium hypochlorite was shown to be antagonistic with both antimicrobial peptides. With other antiseptics, combined action was characterized by additivity or synergy. Synergy was most pronounced with the preparation of highly dispersed silver poviargolum. Antiseptics accelerate the development of the antimicrobial effect of antimicrobial peptides but do not significantly affect the dynamics of the membranolytic action of antimicrobial peptides on bacterial cells. Synergy of hemolytic activity is rare. Thus, the combined use of antimicrobial peptides and antiseptics is promising for combating antibiotic-resistant bacteria and can be used to reduce the toxic effects of these compounds.


2013 ◽  
Vol 57 (6) ◽  
pp. 2511-2521 ◽  
Author(s):  
Berthony Deslouches ◽  
Jonathan D. Steckbeck ◽  
Jodi K. Craigo ◽  
Yohei Doi ◽  
Timothy A. Mietzner ◽  
...  

ABSTRACTThe emergence of multidrug-resistant (MDR) pathogens underscores the need for new antimicrobial agents to overcome the resistance mechanisms of these organisms. Cationic antimicrobial peptides (CAPs) provide a potential source of new antimicrobial therapeutics. We previously characterized a lytic base unit (LBU) series of engineered CAPs (eCAPs) of 12 to 48 residues demonstrating maximum antibacterial selectivity at 24 residues. Further, Trp substitution in LBU sequences increased activity against bothP. aeruginosaandS. aureusunder challenging conditions (e.g., saline, divalent cations, and serum). Based on these findings, we hypothesized that the optimal length and, therefore, the cost for maximum eCAP activity under physiologically relevant conditions could be significantly reduced using only Arg and Trp arranged to form idealized amphipathic helices. Hence, we developed a novel peptide series, composed only of Arg and Trp, in a sequence predicted and verified by circular dichroism to fold into optimized amphipathic helices. The most effective antimicrobial activity was achieved at 12 residues in length (WR12) against a panel of both Gram-negative and Gram-positive clinical isolates, including extensively drug-resistant strains, in saline and broth culture and at various pH values. The results demonstrate that the rational design of CAPs can lead to a significant reduction in the length and the number of amino acids used in peptide design to achieve optimal potency and selectivity against specific pathogens.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 501 ◽  
Author(s):  
Berthony Deslouches ◽  
Ronald C. Montelaro ◽  
Ken L. Urish ◽  
Yuanpu P. Di

The increasing rate of antibiotic resistance constitutes a global health crisis. Antimicrobial peptides (AMPs) have the property to selectively kill bacteria regardless of resistance to traditional antibiotics. However, several challenges (e.g., reduced activity in the presence of serum and lack of efficacy in vivo) to clinical development need to be overcome. In the last two decades, we have addressed many of those challenges by engineering cationic AMPs de novo for optimization under test conditions that typically inhibit the activities of natural AMPs, including systemic efficacy. We reviewed some of the most promising data of the last two decades in the context of the advancement of the field of helical AMPs toward clinical development.


2019 ◽  
Vol 91 (2) ◽  
pp. 181-198 ◽  
Author(s):  
Freda F. Li ◽  
Margaret A. Brimble

Abstract The emergence of multidrug-resistant bacteria has necessitated the urgent need for novel antibacterial agents. Antimicrobial peptides (AMPs), the host-defence molecules of most living organisms, have shown great promise as potential antibiotic candidates due to their multiple mechanisms of action which result in very low or negligible induction of resistance. However, the development of AMPs for clinical use has been limited by their potential toxicity to animal cells, low metabolic stability and high manufacturing cost. Extensive efforts have therefore been directed towards the development of enhanced variants of natural AMPs to overcome these aforementioned limitations. In this review, we present our efforts focused on development of efficient strategies to prepare several recently discovered AMPs including antitubercular peptides. The design and synthesis of more potent and stable AMP analogues with synthetic modifications made to the natural peptides containing glycosylated residues or disulfide bridges are described.


Sign in / Sign up

Export Citation Format

Share Document