scholarly journals Enzymatic Synthesis of Glucose Monodecanoate in a Hydrophobic Deep Eutectic Solvent

2020 ◽  
Vol 21 (12) ◽  
pp. 4342 ◽  
Author(s):  
Rebecca Hollenbach ◽  
Katrin Ochsenreither ◽  
Christoph Syldatk

Environmentally friendly and biodegradable reaction media are an important part of a sustainable glycolipid production in the transition to green chemistry. Deep eutectic solvents (DESs) are an ecofriendly alternative to organic solvents. So far, only hydrophilic DESs were considered for enzymatic glycolipid synthesis. In this study, a hydrophobic DES consisting of (-)-menthol and decanoic acid is presented for the first time as an alternative to hydrophilic DES. The yields in the newly introduced hydrophobic DES are significantly higher than in hydrophilic DESs. Different reaction parameters were investigated to optimize the synthesis further. Twenty milligrams per milliliter iCalB and 0.5 M glucose resulted in the highest initial reaction velocity for the esterification reaction, while the highest initial reaction velocity was achieved with 1.5 M glucose in the transesterification reaction. The enzyme was proven to be reusable for at least five cycles without significant loss of activity.

2017 ◽  
Vol 19 (4) ◽  
pp. 910-913 ◽  
Author(s):  
Tae-Joon Park ◽  
Sang Hyun Lee

FeCl3-catalyzed oxidative polymerization of 3-octylthiophene was achieved using deep eutectic solvents (DESs) for the first time.


Author(s):  
Usman Abbas ◽  
Qi Qiao ◽  
Manh Tien Nguyen ◽  
Jian Shi ◽  
Qing Shao

Hydrophobic deep eutectic solvents (DESs) emerge as candidates to extract organic substrates from aqueous solutions. The DES-aqueous liquid-liquid interface plays a vital role in the extraction ability of hydrophobic DES because the non-bulk structure of molecules at the interface could cause thermodynamic and kinetic barriers. One question is how the DES compositions affect the structural features of the DES-aqueous liquid-liquid interface. We investigate the density profile, dipole moment and hydrogen bonds of eight hydrophobic DES-aqueous liquid-liquid interfaces using molecular dynamics simulations. The eight DESs are composed of four organic compounds: decanoic acid, menthol, thymol, and lidocaine. The simulation results show the variations of dipole moment and hydrogen bond structure and dynamics at the liquid-liquid interfaces. Such variations could influence the extraction ability of DES through adjusting the partition and kinetics of organic substrates in the DES-aqueous biphasic systems.


2018 ◽  
Vol 7 (4) ◽  
pp. 353-359 ◽  
Author(s):  
Jing Wang ◽  
Sheila N. Baker

Abstract Ionic liquids (ILs) are considered to be green solvents for various applications. However, their synthesis via chemical reaction with by-products or waste produced is contradictory to the concept of green chemistry, and the purity problem and economic feasibility limit their applications in some large-scale industrial applications. 1-Butyl-1-methylpyrrolidinium bromide ([bmpy][Br]), which is a molten salt with melting point above 100°C is a precursor of pyrrolidinium ILs, but hardly can be put under the category of IL because of its high melting point. In this study, [bmpy][Br] based binary deep eutectic solvent (BDES) and ternary deep eutectic solvent (TDES) were synthesized to prepare [bmpy][Br] in liquid form. During the preparation process, no reaction media was employed, no by-product was generated, and no further purification was required, thereby making it a completely green process. The prepared TDES has better thermal stability and larger free volume than BDES, which is potentially useful for sorption applications with high temperature requirement. It is also because of the green preparation process that the TDES is also expected to be capable for the large-scale industrial applications. This work is opening up new avenues for the study of binary and ternary IL-DES system and their applications.


2019 ◽  
Vol 21 (11) ◽  
pp. 3074-3080 ◽  
Author(s):  
Wei Jiang ◽  
Hao Jia ◽  
Hongping Li ◽  
Linhua Zhu ◽  
Runming Tao ◽  
...  

Ternary deep eutectic solvents were used for ODS of fuels (DESs) for the first time although most research continues to be focused on binary DESs.


2016 ◽  
Vol 8 (12) ◽  
pp. 2576-2583 ◽  
Author(s):  
Mir Ali Farajzadeh ◽  
Mohammad Reza Afshar Mogaddam ◽  
Mahdi Aghanassab

In this study, for the first time, a new kind of solvent termed deep eutectic solvents has been synthesized and used as the extraction solvent in a dispersive liquid–liquid microextraction method.


Author(s):  
The Thai Nguyen ◽  
Phuong Hoang Tran

Magnetic nanoparticle supported deep eutectic solvents have been synthesized by preparing and grafting [Urea]4[ZnCl2] deep eutectic solvent onto the surface of silica-coated Fe3O4 magnetic nanoparticles using 3‐ chloropropyltrimethoxysilane as a linker. DES@MNP was fully characterized using scanning and transmission electron microscopies, Fourier transforms infrared, energy-dispersive X-ray spectroscopies, vibrating sample magnetometer X-ray diffraction, and thermogravimetric analysis. In this study, we have developed the synthesis of 2-benzylbenzoxazole via condensation reaction of 2-nitrophenols and acetophenones using a magnetic nanoparticle supported [Urea]4[ZnCl2] deep eutectic solvent as a novel, green and efficient catalyst. In the presence of 1,4-diazabicyclo[2.2.2]-octane, elemental sulfur acted as an excellent reductant in promoting oxidative rearranging coupling in this reaction. The reaction has been conducted via the stirring method and the reaction conditions were surveyed (16 h, 130 °C, acetophenone, 2-nitrophenol, DABCO and sulfur molar ratio of 2:1:1:3, 10 mol% DES@MNP catalyst). Six 2-benzylbenzoxazole derivatives have been synthesized via this method with good yield (86-91%). The structure of the pure product has been confirmed through FT-IR, 1H NMR, 13C NMR, and GC-MS methods. More importantly, DES@MNP has been separated from the reaction mixture by a magnet and reused over five consecutive runs without significant loss of catalytic activity.


2016 ◽  
Vol 12 ◽  
pp. 2620-2626 ◽  
Author(s):  
Davide Brenna ◽  
Elisabetta Massolo ◽  
Alessandra Puglisi ◽  
Sergio Rossi ◽  
Giuseppe Celentano ◽  
...  

Different deep eutectic solvent (DES) mixtures were studied as reaction media for the continuous synthesis of enantiomerically enriched products by testing different experimental set-ups. L-Proline-catalysed cross-aldol reactions were efficiently performed in continuo, with high yield (99%), anti-stereoselectivity, and enantioselectivity (up to 97% ee). Moreover, using two different DES mixtures, the diastereoselectivity of the process could be tuned, thereby leading to the formation, under different experimental conditions, to both the syn- and the anti-isomer with very high enantioselectivity. The excess of cyclohexanone was recovered and reused, and the reaction could be run and the product isolated without the use of any organic solvent by a proper choice of DES components. The dramatic influence of the reaction media on the reaction rate and stereoselectivity of the process suggests that the intimate architecture of DESs deeply influences the reactivity of different species involved in the catalytic cycle.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charles R. Midgett ◽  
Kacey Marie Talbot ◽  
Jessica L. Day ◽  
George P. Munson ◽  
F. Jon Kull

AbstractEnteric infections caused by the gram-negative bacteria enterotoxigenic Escherichia coli (ETEC), Vibrio cholerae, Shigella flexneri, and Salmonella enterica are among the most common and affect billions of people each year. These bacteria control expression of virulence factors using a network of transcriptional regulators, some of which are modulated by small molecules as has been shown for ToxT, an AraC family member from V. cholerae. In ETEC the expression of many types of adhesive pili is dependent upon the AraC family member Rns. We present here the 3 Å crystal structure of Rns and show it closely resembles ToxT. Rns crystallized as a dimer via an interface similar to that observed in other dimeric AraC’s. Furthermore, the structure of Rns revealed the presence of a ligand, decanoic acid, that inhibits its activity in a manner similar to the fatty acid mediated inhibition observed for ToxT and the S. enterica homologue HilD. Together, these results support our hypothesis that fatty acids regulate virulence controlling AraC family members in a common manner across a number of enteric pathogens. Furthermore, for the first time this work identifies a small molecule capable of inhibiting the ETEC Rns regulon, providing a basis for development of therapeutics against this deadly human pathogen.


2021 ◽  
Vol 23 (3) ◽  
pp. 1300-1311 ◽  
Author(s):  
Dasom Jung ◽  
Jae Back Jung ◽  
Seulgi Kang ◽  
Ke Li ◽  
Inseon Hwang ◽  
...  

The in vitro and in vivo studies suggest that choline chloride-based deep eutectic solvents may not be considered as pure, safe mixtures even if they consist of safe compounds.


2020 ◽  
Vol 32 (4) ◽  
pp. 733-738 ◽  
Author(s):  
R. Manurung ◽  
Taslim ◽  
A.G.A. Siregar

Deep eutectic solvents (DESs) have numerous potential applications as cosolvents. In this study, use of DES as organic solvents for enzymatic biodiesel production from degumming palm oil (DPO) was investigated. Deep eutectic solvent was synthesized using choline chloride salt (ChCl) compounds with glycerol and 1,2-propanediol. Deep eutectic solvent was characterized by viscosity, density, pH and freezing values, which were tested for effectiveness by enzymatic reactions for the production of palm biodiesel with raw materials DPO. Deep eutectic solvent of ChCl and glycerol produced the highest biodiesel yield (98.98%); weight of DES was only 0.5 % of that of the oil. In addition, the use of DES maintained the activity and stability of novozym enzymes, which was assessed as the yield until the 6th usage, which was 95.07 % biodiesel yield compared with the yield without using DES. Hence, using DES, glycerol in enzymatic biodiesel production had high potentiality as an organic solvent for palm oil biodiesel production


Sign in / Sign up

Export Citation Format

Share Document