scholarly journals Integrated Analysis of Tissue-Specific Promoter Methylation and Gene Expression Profile in Complex Diseases

2020 ◽  
Vol 21 (14) ◽  
pp. 5056
Author(s):  
Kibaick Lee ◽  
Sanghoon Moon ◽  
Mi-Jin Park ◽  
In-Uk Koh ◽  
Nak-Hyeon Choi ◽  
...  

This study investigated whether the promoter region of DNA methylation positively or negatively regulates tissue-specific genes (TSGs) and if it correlates with disease pathophysiology. We assessed tissue specificity metrics in five human tissues, using sequencing-based approaches, including 52 whole genome bisulfite sequencing (WGBS), 52 RNA-seq, and 144 chromatin immunoprecipitation sequencing (ChIP-seq) data. A correlation analysis was performed between the gene expression and DNA methylation levels of the TSG promoter region. The TSG enrichment analyses were conducted in the gene–disease association network (DisGeNET). The epigenomic association analyses of CpGs in enriched TSG promoters were performed using 1986 Infinium MethylationEPIC array data. A correlation analysis showed significant associations between the promoter methylation and 449 TSGs’ expression. A disease enrichment analysis showed that diabetes- and obesity-related diseases were high-ranked. In an epigenomic association analysis based on obesity, 62 CpGs showed statistical significance. Among them, three obesity-related CpGs were newly identified and replicated with statistical significance in independent data. In particular, a CpG (cg17075888 of PDK4), considered as potential therapeutic targets, were associated with complex diseases, including obesity and type 2 diabetes. The methylation changes in a substantial number of the TSG promoters showed a significant association with metabolic diseases. Collectively, our findings provided strong evidence of the relationship between tissue-specific patterns of epigenetic changes and metabolic diseases.

Open Biology ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 180131 ◽  
Author(s):  
Rongsong Luo ◽  
Chunling Bai ◽  
Lei Yang ◽  
Zhong Zheng ◽  
Guanghua Su ◽  
...  

DNA methylation has been investigated for many years, but recent technologies have allowed for single-cell- and single-base-resolution DNA methylation datasets and more accurate assessment of DNA methylation dynamics at the key genomic regions that regulate gene expression in human early embryonic development. In this study, the region from upstream 20 kb to downstream 20 kb of RefSeq gene was selected and divided into 12 distinct regions (up20, up10, up5, up2, 5'UTR, exon, intron, 3'UTR, down2, down5, down10 and down20). The candidate promoter region (TSS ± 2 kb) was further divided into 20 consecutive subregions, which were termed ‘bins’. The DNA methylation dynamics of these regions were systematically analysed along with their effects on gene expression in human early embryos. The dynamic DNA methylation subpatterns at the distinct genomic regions with a focus on promoter regions were mapped. For the 12 distinct genomic regions, up2 and 5'UTR had the lowest DNA methylation levels, and their methylation dynamics were different with other regions. The region 3'UTR had the highest DNA methylation levels, and the correlation analysis with gene expression proved that it was a feature of transcribed genes. For the 20 bins in promoter region, the CpG densities showed a normal distribution pattern, and the trend of the methylated CpG counts was inverse with the DNA methylation levels, especially for the bin 1 (downstream 200 bp of the TSS). Through the correlation analysis between DNA methylation and gene expression, the current study finally revealed that the region bin −4 to 6 (800 bp upstream to 1200 bp downstream of the TSS) was the best candidate for the promoter region in human early embryos, and bin 1 was the putative key regulator of gene activity. This study provided a global and high-resolution view of DNA methylation subpatterns at the distinct genomic regions in human early embryos.


Endocrinology ◽  
2001 ◽  
Vol 142 (8) ◽  
pp. 3389-3396 ◽  
Author(s):  
Jae-Hyeon Cho ◽  
Hiromichi Kimura ◽  
Tatsuya Minami ◽  
Jun Ohgane ◽  
Naka Hattori ◽  
...  

Abstract Expression of rat placental lactogen I is specific to the placenta and never expressed in other tissues. To obtain insight into the mechanism of tissue-specific gene expression, we investigated the methylation status in 3.4 kb of the 5′-flanking region of the rat placental lactogen I gene. We found that the distal promoter region of the rat placental lactogen I gene had more potent promoter activity than that of the proximal area alone, which contains several possible cis-elements. Although there are only 17 CpGs in the promoter region, in vitro methylation of the reporter constructs caused severe suppression of reporter activity, and CpG sites in the placenta were more hypomethylated than other tissues. Coexpression of methyl-CpG-binding protein with reporter constructs elicited further suppression of the reporter activity, whereas treatment with trichostatin A, an inhibitor of histone deacetylase, reversed the suppression caused by methylation. Furthermore, treatment of rat placental lactogen I nonexpressing BRL cells with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation, or trichostatin A resulted in the de novo expression of rat placental lactogen I. These results provide evidence that change in DNA methylation is the fundamental mechanism regulating the tissue-specific expression of the rat placental lactogen I gene.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 470-470
Author(s):  
Susan A Kuldanek ◽  
Sujatha Venkataraman ◽  
Wong Randall ◽  
Ilango Balakrishnan ◽  
Rajeev Vibhakar ◽  
...  

Abstract Background: Von Willebrand disease (VWD) is the most common inherited bleeding disorder with a prevalence ranging from 0.8 to 1.3%. VWD is characterized by incomplete penetrance, variable expressivity with markedly variable VWD antigen levels, even in families with a unifying VWF mutation, suggesting the presence of modifier genes or epigenetic modifications affecting expression of the VWF gene. We had previously diagnosed and characterized an 821-member, multigenerational Amish family in which 121 individuals exhibit a single autosomal-dominant C4120T mutation (R1374C) in the A1 domain of the mature VWF molecule. VWF antigen levels were found to vary significantly, from 9-76 in the individuals exhibiting the C4120T mutation vs 46-483 in the individuals not exhibiting the mutation. To date, very little is known about the epigenetics of VWD and no data exist investigating promoter methylation as a modifier of disease severity. We hypothesized that VWF gene is epigenetically silenced by aberrant DNA methylation resulting in differential expression of VWF protein in patients with VWD. We report our findings suggesting that promoter methylation within the VWF gene may modify VWD severity. Methods: Genomic DNA previously extracted from whole blood using DNeasy kit was CT converted with the use of the EZ DNA Methylation Kit. Primers encompassing a CpG island containing 4 CpG sites in the 5’ region of the VWF gene spanning from 138 to 490 were designed using MethPrimer. The resulting PCR products were gel-extracted and purified, cloned using the TOPO TA Cloning Kit, transformed into competent, Amp resistant E. coli cells and grown on an Ampicillin containing media. This was done in 30 samples, 20 of which contain the disease-characterizing C4120T mutation and 10 which did not. Approximately 20 colonies from each of the 30 samples were randomly chosen and grown in culture media. Plasmid DNA was extracted and sequenced on an ABI-Prism 3100 Genetic Analyzer. The methylation status of 4 CpG dinucleotides of the VWF promoter regions was analyzed using BiQ Analyzer software. Results: We performed ANOVA comparing the high VWF antigen level clones against the low VWF antigen level clones within the C4120T mutation subset and similarly for the controls. Methylation percentage was higher in the low antigen level group at each of the four CpG sites although none reached statistical significance. At two sites, we achieved near statistical significance CpG1 (p=0.100) and CpG2 (p=0.063). Among the control individuals, we did not observe this trend. Methylation was higher in the low antigen group vs the high antigen level group at CpG sites 2 and 3, but lower at CpG sites 1 and 4 with CpG4 bordering on statistical significant (p=0.053). We also performed a Spearman Rank-Order Correlation Coefficient which yielded a near-significant trend between VWF antigen level and methylation percentage within the mutation-bearing, low-expression subset at CpG4 (p=0.064). Discussion: Promoter methylation is known to modify gene expression in numerous disease processes. For the first time, we demonstrate a possible epigenetic effect contributing to the known variance in severity of von Willebrand Disease that is known to correlate with VWF antigen levels. Although our data do not achieve statistical significance, we observed a trend of higher methylation associated with low antigen levels in individuals with the C4120T mutation at two CpG sites. We also observed a near significant association between degree of methylation and VWF antigen levels at 1 CpG site within the mutation-bearing, low antigen level subset. Further studies with larger number of individuals will confirm or refute this observation. Disclosures No relevant conflicts of interest to declare.


2000 ◽  
Vol 20 (9) ◽  
pp. 3316-3329 ◽  
Author(s):  
Carsten Müller ◽  
Carol Readhead ◽  
Sven Diederichs ◽  
Gregory Idos ◽  
Rong Yang ◽  
...  

ABSTRACT Gene expression in mammalian organisms is regulated at multiple levels, including DNA accessibility for transcription factors and chromatin structure. Methylation of CpG dinucleotides is thought to be involved in imprinting and in the pathogenesis of cancer. However, the relevance of methylation for directing tissue-specific gene expression is highly controversial. The cyclin A1 gene is expressed in very few tissues, with high levels restricted to spermatogenesis and leukemic blasts. Here, we show that methylation of the CpG island of the human cyclin A1 promoter was correlated with nonexpression in cell lines, and the methyl-CpG binding protein MeCP2 suppressed transcription from the methylated cyclin A1 promoter. Repression could be relieved by trichostatin A. Silencing of a cyclin A1 promoter-enhanced green fluorescent protein (EGFP) transgene in stable transfected MG63 osteosarcoma cells was also closely associated with de novo promoter methylation. Cyclin A1 could be strongly induced in nonexpressing cell lines by trichostatin A but not by 5-aza-cytidine. The cyclin A1 promoter-EGFP construct directed tissue-specific expression in male germ cells of transgenic mice. Expression in the testes of these mice was independent of promoter methylation, and even strong promoter methylation did not suppress promoter activity. MeCP2 expression was notably absent in EGFP-expressing cells. Transcription from the transgenic cyclin A1 promoter was repressed in most organs outside the testis, even when the promoter was not methylated. These data show the association of methylation with silencing of the cyclin A1 gene in cancer cell lines. However, appropriate tissue-specific repression of the cyclin A1 promoter occurs independently of CpG methylation.


2018 ◽  
Vol 40 (01) ◽  
pp. 62-70 ◽  
Author(s):  
Alexander Schenk ◽  
Walter Pulverer ◽  
Christine Koliamitra ◽  
Claus Bauer ◽  
Suzana Ilic ◽  
...  

AbstractPositive effects of exercise on cancer prevention and progression have been proposed to be mediated by stimulating natural killer (NK) cells. Because NK cell receptors are regulated by epigenetic modifications, we investigated whether acute aerobic exercise and training change promoter DNA methylation and gene expression of the activating KIR2DS4 and the inhibiting KIR3DL1 gene. Sixteen healthy women (50–60 years) performed a graded exercise test (GXT) and were randomized into either a passive control group or an intervention group performing a four-week endurance exercise intervention. Blood samples (pre-, post-GXT and post-training) were used for isolation of DNA/RNA of NK cells to assess DNA promoter methylation by targeted deep-amplicon sequencing and gene expression by qRT-PCR. Potential changes in NK cell subsets were determined by flow cytometry. Acute and chronic exercise did not provoke significant alterations of NK cell proportions. Promoter methylation decreased and gene expression increased for KIR2DS4 after acute exercise. A high gene expression correlated with a low methylation of CpGs that were altered by acute exercise. Chronic exercise resulted in a minor decrease of DNA methylation and did not alter gene expression. Acute exercise provokes epigenetic modifications, affecting the balance between the activating KIR2DS4 and the inhibiting KIR3DL1, with potential benefits on NK cell function.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2608-2608
Author(s):  
Claudia Gebhard ◽  
Roger Mulet-Lazaro ◽  
Lucia Schwarzfischer ◽  
Dagmar Glatz ◽  
Margit Nuetzel ◽  
...  

Abstract Acute myeloid leukemia (AML) represents a highly heterogeneous myeloid stem cell disorder classified based on various genetic defects. Besides genetic alterations, epigenetic changes are recognized as an additional mechanism contributing to leukemogenesis, but insight into the latter process remains minor. Using a combination of Methyl-CpG-Immunoprecipitation (MCIp-chip) and MALDI-TOF analysis of bisulfite-treated DNA in a cohort of 196 AML patients we previously demonstrated that (cyto)genetically defined AML subtypes, including CBFB-MYH11, AML-ETO, NPM1-mut, CEBPA-mut or IDH1/2-mut subtypes, express specific DNA-methylation profiles (Gebhard et al, Leukemia, 2018). A fraction of AML patients (5/196) displayed a unique abnormal hypermethylation profile that was completely distinct from any other AML subtype. These patients present immature leukemia (FAB M0, M1) with various chromosomal aberrations but very few mutations (e.g. no IDH1/2, KRAS, DNMT3A) that might explain the CpG island methylator phenotype (CIMP) phenotype. The CIMP patients showed high resemblance with a recently reported CEBPA methylated subgroup (Wouters et al, 2007 and Figueroa et al, 2009), which we confirmed by MCIp-chip and MALDI-TOF analysis. To explore the whole range of epigenetic alterations in the CIMP-AML patients we performed in-depth global DNA methylation and gene expression analyses (MCIp-seq and RNA-seq) in 45 AML and 12 CIMP patients from both studies. Principle component analysis and t-distributed stochastic neighbor embedding (t-SNE) revealed that CIMP patients express a unique DNA-methylation and gene-expression signature that separated them from all other AMLs. We could discriminate promoter methylation from non-promoter methylation by selecting MCIp-seq peaks within 3kb around TSS. Promoter hypermethylation was highly associated with repression of genes (PCC = -0.053, p-value = 0.00075). Hypermethylation of non-promoter regions was more strongly associated with upregulation of genes (PCC = 0.046, p-value = 4.613e-06). Interestingly, differentially methylated regions also showed a positive association with myeloid lineage CTCF binding sites (27% vs 18% expected, p-value < 2.2e-16 in a chi-square test of independence). Methylation of CTCF sites causes loss of CTCF binding, which has been reported to disrupt boundaries between so-called topologically associated domains (TADs), allowing enhancers located in a particular TAD to become accessible to genes in adjacent TADs and affect their transcription. Whether this is the case is under investigation. In this study we particularly focused on the role of hypermethylation of promoters in CIMP-AMLs. Promoters of many transcriptional regulators that are involved in the differentiation of myeloid lineages of which several are frequently mutated in AML were hypermethylated and repressed, including CEBPA, CEBPD, IRF8, GATA2, KLF4, MITF or MAFB. Notably, HMGA2, a critical regulator of myeloid progenitor expansion, exhibited the largest degree of CIMP promoter hypermethylation compared to the other AMLs, accompanied by a reduction in gene expression. Moreover, multiple members of the HOXB family and KLF1 (erythroid differentiation) were methylated and repressed as well. In addition, these patients frequently showed hypermethylation of many chromatin factors (e.g. LMNA, CHD7 or TET2). Hypermethylation of the TET2 promoter could result in a loss of maintenance DNA demethylation and therefore successive hypermethylation at CpG islands. We carried out regulome-capture-bisulfite sequencing on CIMP-AMLs compared to other AML samples and normal blood cell controls and confirmed methylation of the same transcription and chromatin factor promoters. We conclude that these leukemias represent very primitive HSCPs which are blocked in differentiation into multiple hematopoietic lineages, due to the absence of regulators of these lineages. Although the underlying cause for the extreme hypermethylation signature is still subject to ongoing studies, the consequence of promoter hypermethylation is silencing of key lineage regulators causing the differentiation arrest in these cells. We argue that these patients may particularly benefit from therapies that revert DNA methylation. Disclosures Ehninger: Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; GEMoaB Monoclonals GmbH: Employment, Equity Ownership; Bayer: Research Funding. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding.


Author(s):  
Daniel M. Sapozhnikov ◽  
Moshe Szyf

AbstractAlthough associations between DNA methylation and gene expression were established four decades ago, the causal role of DNA methylation in gene expression remains unresolved. Different strategies to address this question were developed; however, all are confounded and fail to disentangle cause and effect. We developed here a highly effective new method using only deltaCas9(dCas9):gRNA site-specific targeting to physically block DNA methylation at specific targets in the absence of a confounding flexibly-tethered enzymatic activity, enabling examination of the role of DNA methylation per se in living cells. We show that the extensive induction of gene expression achieved by TET/dCas9-based targeting vectors is confounded by DNA methylation-independent activities, inflating the role of DNA methylation in the promoter region. Using our new method, we show that in several inducible promoters, the main effect of DNA methylation is silencing basal promoter activity. Thus, the effect of demethylation of the promoter region in these genes is small, while induction of gene expression by different inducers is large and DNA methylation independent. In contrast, targeting demethylation to the pathologically silenced FMR1 gene targets robust induction of gene expression. We also found that standard CRISPR/Cas9 knockout generates a broad unmethylated region around the deletion, which might confound interpretation of CRISPR/Cas9 gene depletion studies. In summary, this new method could be used to reveal the true extent, nature, and diverse contribution to gene regulation of DNA methylation at different regions.


2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Roderick C. Slieker ◽  
Caroline L. Relton ◽  
Tom R. Gaunt ◽  
P. Eline Slagboom ◽  
Bastiaan T. Heijmans

2020 ◽  
Vol 11 ◽  
Author(s):  
Yan Zhang ◽  
Dianjing Guo

As one of the most common malignant tumors worldwide, gastric adenocarcinoma (GC) and its prognosis are still poorly understood. Various genetic and epigenetic factors have been indicated in GC carcinogenesis. However, a comprehensive and in-depth investigation of epigenetic alteration in gastric cancer is still missing. In this study, we systematically investigated some key epigenetic features in GC, including DNA methylation and five core histone modifications. Data from The Cancer Genome Atlas Program and other studies (Gene Expression Omnibus) were collected, analyzed, and validated with multivariate statistical analysis methods. The landscape of epi-modifications in gastric cancer was described. Chromatin state transition analysis showed a histone marker shift in gastric cancer genome by employing a Hidden-Markov-Model based approach, indicated that histone marks tend to label different sets of genes in GC compared to control. An additive effect of these epigenetic marks was observed by integrated analysis with gene expression data, suggesting epigenetic modifications may cooperatively regulate gene expression. However, the effect of DNA methylation was found more significant without the presence of the five histone modifications in our study. By constructing a PPI network, key genes to distinguish GC from normal samples were identified, and distinct patterns of oncogenic pathways in GC were revealed. Some of these genes can also serve as potential biomarkers to classify various GC molecular subtypes. Our results provide important insights into the epigenetic regulation in gastric cancer and other cancers in general. This study describes the aberrant epigenetic variation pattern in GC and provides potential direction for epigenetic biomarker discovery.


Sign in / Sign up

Export Citation Format

Share Document