scholarly journals Epigenetic Mechanisms in Gastric Cancer: Potential New Therapeutic Opportunities

2020 ◽  
Vol 21 (15) ◽  
pp. 5500
Author(s):  
Matteo Canale ◽  
Andrea Casadei-Gardini ◽  
Paola Ulivi ◽  
Maria Arechederra ◽  
Carmen Berasain ◽  
...  

Gastric cancer (GC) is one of the deadliest malignancies worldwide. Complex disease heterogeneity, late diagnosis, and suboptimal therapies result in the poor prognosis of patients. Besides genetic alterations and environmental factors, it has been demonstrated that alterations of the epigenetic machinery guide cancer onset and progression, representing a hallmark of gastric malignancies. Moreover, epigenetic mechanisms undergo an intricate crosstalk, and distinct epigenomic profiles can be shaped under different microenvironmental contexts. In this scenario, targeting epigenetic mechanisms could be an interesting therapeutic strategy to overcome gastric cancer heterogeneity, and the efforts conducted to date are delivering promising results. In this review, we summarize the key epigenetic events involved in gastric cancer development. We conclude with a discussion of new promising epigenetic strategies for gastric cancer treatment.

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 914
Author(s):  
Teresa Gagliano ◽  
Claudio Brancolini

Despite cancer having been usually considered the result of genetic mutations, it is now well established that epigenetic dysregulations play pivotal roles in cancer onset and progression. Hence, inactivation of tumour suppressor genes can be gained not only by genetic mutations, but also by epigenetic mechanisms such as DNA methylation and histone modifications. To occur, epigenetic events need to be triggered by genetic alterations of the epigenetic regulators, or they can be mediated by intracellular and extracellular stimuli. In this last setting, the tumour microenvironment (TME) plays a fundamental role. Therefore, to decipher how epigenetic changes are associated with TME is a challenge still open. The complex signalling between tumour cells and stroma is currently under intensive investigation, and most of the molecules and pathways involved still need to be identified. Neoplastic initiation and development are likely to involve a back-and-forth crosstalk among cancer and stroma cells. An increasing number of studies have highlighted that the cancer epigenome can be influenced by tumour microenvironment and vice versa. Here, we discuss about the recent literature on tumour–stroma interactions that focus on epigenetic mechanisms and the reciprocal regulation between cancer and TME cells.


2019 ◽  
Vol 56 (4) ◽  
pp. 199-208 ◽  
Author(s):  
Joana Figueiredo ◽  
Soraia Melo ◽  
Patrícia Carneiro ◽  
Ana Margarida Moreira ◽  
Maria Sofia Fernandes ◽  
...  

CDH1 encodes E-cadherin, a key protein in adherens junctions. Given that E-cadherin is involved in major cellular processes such as embryogenesis and maintenance of tissue architecture, it is no surprise that deleterious effects arise from its loss of function. E-cadherin is recognised as a tumour suppressor gene, and it is well established that CDH1 genetic alterations cause diffuse gastric cancer and lobular breast cancer—the foremost manifestations of the hereditary diffuse gastric cancer syndrome. However, in the last decade, evidence has emerged demonstrating that CDH1 mutations can be associated with lobular breast cancer and/or several congenital abnormalities, without any personal or family history of diffuse gastric cancer. To date, no genotype–phenotype correlations have been observed. Remarkably, there are reports of mutations affecting the same nucleotide but inducing distinct clinical outcomes. In this review, we bring together a comprehensive analysis of CDH1-associated disorders and germline alterations found in each trait, providing important insights into the biological mechanisms underlying E-cadherin’s pleiotropic effects. Ultimately, this knowledge will impact genetic counselling and will be relevant to the assessment of risk of cancer development or congenital malformations in CDH1 mutation carriers.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Feifei Zhang ◽  
Hui Wang ◽  
Jiang Yu ◽  
Xueqing Yao ◽  
Shibin Yang ◽  
...  

AbstractDe novo and acquired resistance, which are mainly mediated by genetic alterations, are barriers to effective routine chemotherapy. However, the mechanisms underlying gastric cancer (GC) resistance to chemotherapy are still unclear. We showed that the long noncoding RNA CRNDE was related to the chemosensitivity of GC in clinical samples and a PDX model. CRNDE was decreased and inhibited autophagy flux in chemoresistant GC cells. CRNDE directly bound to splicing protein SRSF6 to reduce its protein stability and thus regulate alternative splicing (AS) events. We determined that SRSF6 regulated the PICALM exon 14 skip splice variant and triggered a significant S-to-L isoform switch, which contributed to the expression of the long isoform of PICALM (encoding PICALML). Collectively, our findings reveal the key role of CRNDE in autophagy regulation, highlighting the significance of CRNDE as a potential prognostic marker and therapeutic target against chemoresistance in GC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mengya He ◽  
Limin Yue ◽  
Haiyan Wang ◽  
Feiyan Yu ◽  
Mingyang Yu ◽  
...  

AbstractChromobox (CBX) proteins were suggested to exert epigenetic regulatory and transcriptionally repressing effects on target genes and might play key roles in the carcinogenesis of a variety of carcinomas. Nevertheless, the functions and prognostic significance of CBXs in gastric cancer (GC) remain unclear. The current study investigated the roles of CBXs in the prognosis of GC using the Oncomine, The Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, The Cancer Genome Atlas (TCGA), and cBioPortal databases. CBX1/2/3/4/5 were significantly upregulated in GC tissues compared with normal tissues, and CBX7 was downregulated. Multivariate analysis showed that high mRNA expression levels of CBX3/8 were independent prognostic factors for prolonged OS in GC patients. In addition, the genetic mutation rate of CBXs was 37% in GC patients, and genetic alterations in CBXs showed no association with OS or disease-free survival (DFS) in GC patients. These results indicated that CBX3/8 can be prognostic biomarkers for the survival of GC patients.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 332
Author(s):  
Krystyna Fabianowska-Majewska ◽  
Agnieszka Kaufman-Szymczyk ◽  
Aldona Szymanska-Kolba ◽  
Jagoda Jakubik ◽  
Grzegorz Majewski ◽  
...  

One of the most systematically studied bioactive nutraceuticals for its benefits in the management of various diseases is the turmeric-derived compounds: curcumin. Turmeric obtained from the rhizome of a perennial herb Curcuma longa L. is a condiment commonly used in our diet. Curcumin is well known for its potential role in inhibiting cancer by targeting epigenetic machinery, with DNA methylation at the forefront. The dynamic DNA methylation processes serve as an adaptive mechanism to a wide variety of environmental factors, including diet. Every healthy tissue has a precise DNA methylation pattern that changes during cancer development, forming a cancer-specific design. Hypermethylation of tumor suppressor genes, global DNA demethylation, and promoter hypomethylation of oncogenes and prometastatic genes are hallmarks of nearly all types of cancer, including breast cancer. Curcumin has been shown to modulate epigenetic events that are dysregulated in cancer cells and possess the potential to prevent cancer or enhance the effects of conventional anti-cancer therapy. Although mechanisms underlying curcumin-mediated changes in the epigenome remain to be fully elucidated, the mode of action targeting both hypermethylated and hypomethylated genes in cancer is promising for cancer chemoprevention. This review provides a comprehensive discussion of potential epigenetic mechanisms of curcumin in reversing altered patterns of DNA methylation in breast cancer that is the most commonly diagnosed cancer and the leading cause of cancer death among females worldwide. Insight into the other bioactive components of turmeric rhizome as potential epigenetic modifiers has been indicated as well.


The Lancet ◽  
2010 ◽  
Vol 376 (9754) ◽  
pp. 1736-1737
Author(s):  
Alastair J Munro ◽  
Paddy G Niblock

Sign in / Sign up

Export Citation Format

Share Document