scholarly journals Splicing Enhancers at Intron–Exon Borders Participate in Acceptor Splice Sites Recognition

2020 ◽  
Vol 21 (18) ◽  
pp. 6553
Author(s):  
Tatiana Kováčová ◽  
Přemysl Souček ◽  
Pavla Hujová ◽  
Tomáš Freiberger ◽  
Lucie Grodecká

Acceptor splice site recognition (3′ splice site: 3′ss) is a fundamental step in precursor messenger RNA (pre-mRNA) splicing. Generally, the U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor (U2AF) heterodimer recognizes the 3′ss, of which U2AF35 has a dual function: (i) It binds to the intron–exon border of some 3′ss and (ii) mediates enhancer-binding splicing activators’ interactions with the spliceosome. Alternative mechanisms for 3′ss recognition have been suggested, yet they are still not thoroughly understood. Here, we analyzed 3′ss recognition where the intron–exon border is bound by a ubiquitous splicing regulator SRSF1. Using the minigene analysis of two model exons and their mutants, BRCA2 exon 12 and VARS2 exon 17, we showed that the exon inclusion correlated much better with the predicted SRSF1 affinity than 3′ss quality, which were assessed using the Catalog of Inferred Sequence Binding Preferences of RNA binding proteins (CISBP-RNA) database and maximum entropy algorithm (MaxEnt) predictor and the U2AF35 consensus matrix, respectively. RNA affinity purification proved SRSF1 binding to the model 3′ss. On the other hand, knockdown experiments revealed that U2AF35 also plays a role in these exons’ inclusion. Most probably, both factors stochastically bind the 3′ss, supporting exon recognition, more apparently in VARS2 exon 17. Identifying splicing activators as 3′ss recognition factors is crucial for both a basic understanding of splicing regulation and human genetic diagnostics when assessing variants’ effects on splicing.

2002 ◽  
Vol 3 (3) ◽  
pp. 195-205 ◽  
Author(s):  
Gideon Dreyfuss ◽  
V. Narry Kim ◽  
Naoyuki Kataoka

1997 ◽  
Vol 17 (4) ◽  
pp. 2158-2165 ◽  
Author(s):  
A F Ross ◽  
Y Oleynikov ◽  
E H Kislauskis ◽  
K L Taneja ◽  
R H Singer

Localization of beta-actin mRNA to the leading edge of fibroblasts requires the presence of conserved elements in the 3' untranslated region of the mRNA, including a 54-nucleotide element which has been termed the "zipcode" (E. Kislauskis, X. Zhu, and R. H. Singer, J. Cell Biol. 127:441-451, 1994). In order to identify proteins which bind to the zipcode and possibly play a role in localization, we performed band-shift mobility assays, UV cross-linking, and affinity purification experiments. A protein of 68 kDa was identified which binds to the proximal (to the coding region) half of the zipcode with high specificity (ZBP-1). Microsequencing provided unique peptide sequences of approximately 15 residues each. Degenerate primers corresponding to the codons derived from the peptides were synthesized and used for PCR amplification. Screening of a chicken cDNA library resulted in isolation of several clones providing a DNA sequence encoding a 67.7-kDa protein with regions homologous to several RNA-binding proteins, such as hnRNP E1 and E2, and with consensus mRNA recognition motif with RNP1 and 2 motifs and a putative REV-like nuclear export signal. Antipeptide antibodies were raised in rabbits which bound to ZBP-1 and coimmunoprecipitated proteins of 120 and 25 kDa. The 120-kDa protein was also obtained by affinity purification with the RNA zipcode sequence, along with a 53-kDa protein, but the 25-kDa protein appeared only in immunoprecipitations. Mutation of one of the conserved sequences within the zipcode, an ACACCC element in its proximal half, greatly reduced its protein binding and localization properties. These data suggest that the 68-kDa ZBP-1 we have isolated and cloned is an RNA-binding protein that functions within a complex to localize beta-actin mRNA.


2019 ◽  
Vol 144 (2) ◽  
pp. 79-91 ◽  
Author(s):  
Zhigang Ouyang ◽  
Huihui Duan ◽  
Lanfang Mi ◽  
Wei Hu ◽  
Jianmei Chen ◽  
...  

In eukaryotic systems, messenger RNA regulations, including splicing, 3′-end formation, editing, localization, and translation, are achieved by different RNA-binding proteins and noncoding RNAs. The YTH domain is a newly identified RNA-binding domain that was identified by comparing its sequence with that of splicing factor YT521-B. Previous study showed that the YTH gene plays an important role in plant resistance to abiotic and biotic stress. In this study, 211 YTH genes were identified in 26 species that represent four major plant lineages. Phylogenetic analysis revealed that these genes could be divided into eight subgroups. All of the YTH genes contain a YT521 domain and have different structures. Ten YTH genes were identified in navel orange (Citrus sinensis). The expression profiles of these CitYTH genes were analyzed in different tissues and at different fruit developmental stages, and CitYTH genes displayed distinct expression patterns under heat, cold, salt, and drought stress. Furthermore, expression of the CitYTH genes in response to exogenous hormones was measured. Nuclear localization was also confirmed for five of the proteins encoded by these genes after transient expression in Nicotiana benthamiana cells. This study provides valuable information on the role of CitYTHs in the signaling pathways involved in environmental stress responses in Citrus.


2020 ◽  
Vol 295 (42) ◽  
pp. 14291-14304
Author(s):  
Kathrin Bajak ◽  
Kevin Leiss ◽  
Christine Clayton ◽  
Esteban Erben

In Trypanosoma brucei and related kinetoplastids, gene expression regulation occurs mostly posttranscriptionally. Consequently, RNA-binding proteins play a critical role in the regulation of mRNA and protein abundance. Yet, the roles of many RNA-binding proteins are not understood. Our previous research identified the RNA-binding protein ZC3H5 as possibly involved in gene repression, but its role in controlling gene expression was unknown. We here show that ZC3H5 is an essential cytoplasmic RNA-binding protein. RNAi targeting ZC3H5 causes accumulation of precytokinetic cells followed by rapid cell death. Affinity purification and pairwise yeast two-hybrid analysis suggest that ZC3H5 forms a complex with three other proteins, encoded by genes Tb927.11.4900, Tb927.8.1500, and Tb927.7.3040. RNA immunoprecipitation revealed that ZC3H5 is preferentially associated with poorly translated, low-stability mRNAs, the 5′-untranslated regions and coding regions of which are enriched in the motif (U/A)UAG(U/A). As previously found in high-throughput analyses, artificial tethering of ZC3H5 to a reporter mRNA or other complex components repressed reporter expression. However, depletion of ZC3H5 in vivo caused only very minor decreases in a few targets, marked increases in the abundances of very stable mRNAs, an increase in monosomes at the expense of large polysomes, and appearance of “halfmer” disomes containing two 80S subunits and one 40S subunit. We speculate that the ZC3H5 complex might be implicated in quality control during the translation of suboptimal open reading frames.


Endocrinology ◽  
2009 ◽  
Vol 150 (11) ◽  
pp. 4958-4967 ◽  
Author(s):  
Caroline Rivers ◽  
Andrea Flynn ◽  
Xiaoxiao Qian ◽  
Laura Matthews ◽  
Stafford Lightman ◽  
...  

Alternative splicing events from tandem donor sites result in mRNA variants coding for additional amino acids in the DNA binding domain of both the glucocorticoid (GR) and mineralocorticoid (MR) receptors. We now show that expression of both splice variants is extensively conserved in mammalian species, providing strong evidence for their functional significance. An exception to the conservation of the MR tandem splice site (an A at position +5 of the MR+12 donor site in the mouse) was predicted to decrease U1 small nuclear RNA binding. In accord with this prediction, we were unable to detect the MR+12 variant in this species. The one exception to the conservation of the GR tandem splice site, an A at position +3 of the platypus GRγ donor site that was predicted to enhance binding of U1 snRNA, was unexpectedly associated with decreased expression of the variant from the endogenous gene as well as a minigene. An intronic pyrimidine motif present in both GR and MR genes was found to be critical for usage of the downstream donor site, and overexpression of TIA1/TIAL1 RNA binding proteins, which are known to bind such motifs, led to a marked increase in the proportion of GRγ and MR+12. These results provide striking evidence for conservation of a complex splicing mechanism that involves processes other than stochastic spliceosome binding and identify a mechanism that would allow regulation of variant expression.


2016 ◽  
Vol 212 (1) ◽  
pp. 13-27 ◽  
Author(s):  
Benoit Chabot ◽  
Lulzim Shkreta

Examples of associations between human disease and defects in pre–messenger RNA splicing/alternative splicing are accumulating. Although many alterations are caused by mutations in splicing signals or regulatory sequence elements, recent studies have noted the disruptive impact of mutated generic spliceosome components and splicing regulatory proteins. This review highlights recent progress in our understanding of how the altered splicing function of RNA-binding proteins contributes to myelodysplastic syndromes, cancer, and neuropathologies.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Barbara Celona ◽  
John von Dollen ◽  
Sarat C Vatsavayai ◽  
Risa Kashima ◽  
Jeffrey R Johnson ◽  
...  

Expanded GGGGCC repeats in the first intron of the C9orf72 gene represent the most common cause of familial amyotrophic lateral sclerosis (ALS), but the mechanisms underlying repeat-induced disease remain incompletely resolved. One proposed gain-of-function mechanism is that repeat-containing RNA forms aggregates that sequester RNA binding proteins, leading to altered RNA metabolism in motor neurons. Here, we identify the zinc finger protein Zfp106 as a specific GGGGCC RNA repeat-binding protein, and using affinity purification-mass spectrometry, we show that Zfp106 interacts with multiple other RNA binding proteins, including the ALS-associated factors TDP-43 and FUS. We also show that Zfp106 knockout mice develop severe motor neuron degeneration, which can be suppressed by transgenic restoration of Zfp106 specifically in motor neurons. Finally, we show that Zfp106 potently suppresses neurotoxicity in a Drosophila model of C9orf72 ALS. Thus, these studies identify Zfp106 as an RNA binding protein with important implications for ALS.


2019 ◽  
Author(s):  
Sandeep Ojha ◽  
Chaitanya Jain

AbstractThe ability to identify RNAs that are recognized by RNA-binding proteins (RNA-BPs) using techniques such as “Crosslinking and Immunoprecipitation” (CLIP) has revolutionized the genome-wide discovery of RNA targets. Among the different versions of CLIP developed, the incorporation of photoactivable nucleoside analogs into cellular RNA has proven to be especially valuable, allowing for high efficiency photoactivable ribonucleoside-enhanced CLIP (PAR-CLIP). Although PAR-CLIP has become an established technique for use in eukaryotes, it has not yet been applied in prokaryotes. To determine if PAR-CLIP can be used in prokaryotes, we first investigated whether 4-thiouridine (4SU), a photoactivable nucleoside, can be incorporated into E. coli RNA. After determining 4SU incorporation into RNA, we developed suitable conditions for crosslinking of proteins in E. coli cells and for the isolation of crosslinked RNA. Applying this technique to Hfq, a well-characterized regulator of small RNA (sRNA) - messenger RNA (mRNA) interactions, we showed that PAR-CLIP identified most of the known sRNA targets of Hfq. Based on our results, PAR-CLIP represents an improved method to identify the RNAs recognized by RNA-BPs in prokaryotes.


Sign in / Sign up

Export Citation Format

Share Document