scholarly journals CD8 T Cell Score as a Prognostic Biomarker for Triple Negative Breast Cancer

2020 ◽  
Vol 21 (18) ◽  
pp. 6968 ◽  
Author(s):  
Masanori Oshi ◽  
Mariko Asaoka ◽  
Yoshihisa Tokumaru ◽  
Li Yan ◽  
Ryusei Matsuyama ◽  
...  

CD8 T cell is an essential component of tumor-infiltrating lymphocytes (TIL) and tumor immune microenvironment (TIME). Using the xCell CD8 T cell score of whole tumor gene expression data, we estimated these cells in total of 3837 breast cancer patients from TCGA, METABRIC and various GEO cohorts. The CD8 score correlated strongly with expression of CD8 genes. The score was highest for triple-negative breast cancer (TNBC), and a high score was associated with high tumor immune cytolytic activity and better survival in TNBC but not other breast cancer subtypes. In TNBC, tumors with a high CD8 score had enriched expression of interferon (IFN)-α and IFN-γ response and allograft rejection gene sets, and greater infiltration of anti-cancerous immune cells. The score strongly correlated with CD4 memory T cells in TNBC, and tumors with both a high CD8 score and high CD4 memory T cell abundance had significantly better survival. Finally, a high CD8 score was significantly associated with high expression of multiple immune checkpoint molecules. In conclusion, a high CD8 T cell score is associated with better survival in TNBC, particularly when tumor CD4 memory T cells were elevated. Our findings also suggest a possible use of the score as a predictive biomarker for response to immune checkpoint therapy.

2019 ◽  
Vol 11 (513) ◽  
pp. eaax9364 ◽  
Author(s):  
Yin Wu ◽  
Fernanda Kyle-Cezar ◽  
Richard T. Woolf ◽  
Cristina Naceur-Lombardelli ◽  
Julie Owen ◽  
...  

Innate-like tissue-resident γδ T cell compartments capable of protecting against carcinogenesis are well established in mice. Conversely, the degree to which they exist in humans, their potential properties, and their contributions to host benefit are mostly unresolved. Here, we demonstrate that healthy human breast harbors a distinct γδ T cell compartment, primarily expressing T cell receptor (TCR) Vδ1 chains, by comparison to Vδ2 chains that predominate in peripheral blood. Breast-resident Vδ1+ cells were functionally skewed toward cytolysis and IFN-γ production, but not IL-17, which has been linked with inflammatory pathologies. Breast-resident Vδ1+ cells could be activated innately via the NKG2D receptor, whereas neighboring CD8+ αβ T cells required TCR signaling. A comparable population of Vδ1+ cells was found in human breast tumors, and when paired tumor and nonmalignant samples from 11 patients with triple-negative breast cancer were analyzed, progression-free and overall survival correlated with Vδ1+ cell representation, but not with either total γδ T cells or Vδ2+ T cells. As expected, progression-free survival also correlated with αβ TCRs. However, whereas in most cases TCRαβ repertoires focused, typical of antigen-specific responses, this was not observed for Vδ1+ cells, consistent with their innate-like responsiveness. Thus, maximal patient benefit may accrue from the collaboration of innate-like responses mounted by tissue-resident Vδ1+ compartments and adaptive responses mounted by αβ T cells.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Katherine J. Carpenter ◽  
Aurore-Cecile Valfort ◽  
Nick Steinauer ◽  
Arindam Chatterjee ◽  
Suomia Abuirqeba ◽  
...  

AbstractTriple-negative breast cancer (TNBC) is a highly aggressive subtype that is untreatable with hormonal or HER2-targeted therapies and is also typically unresponsive to checkpoint-blockade immunotherapy. Within the tumor microenvironment dysregulated immune cell metabolism has emerged as a key mechanism of tumor immune-evasion. We have discovered that the Liver-X-Receptors (LXRα and LXRβ), nuclear receptors known to regulate lipid metabolism and tumor-immune interaction, are highly activated in TNBC tumor associated myeloid cells. We therefore theorized that inhibiting LXR would induce immune-mediated TNBC-tumor clearance. Here we show that pharmacological inhibition of LXR activity induces tumor destruction primarily through stimulation of CD8+ T-cell cytotoxic activity and mitochondrial metabolism. Our results imply that LXR inverse agonists may be a promising new class of TNBC immunotherapies.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e12564-e12564
Author(s):  
Eleonora Timperi ◽  
Mengliang Ye ◽  
Thierry Dubois ◽  
Didier Meseure ◽  
Anne Vincent- Salomon ◽  
...  

e12564 Background: Triple negative breast cancer (TNBC) occurs in about 20% of all breast carcinomas. Because only a fraction of TNBCs responding to immune checkpoint blockade show a pre-existing T cell-inflamed tumor microenvironment (TME), it is critical to understand the mechanisms of T-cell exclusion. Tumor-cell intrinsic activation of the WNT/β–catenin pathway, overexpressed in 30% of human breast cancers, is linked to a T-cell excluded TME. In β–cateninhigh TNBC, however, the quality of the myeloid compartment has not been evaluated. Methods: A total of seventy-five, early-stage, untreated, TNBC patients was assessed (patient cohorts approved by IRB). β–catenin expression was detected by IHC and scored as high, intermediate, and low. The presence of T cells, tumor-associated macrophages (TAMs) and LAMP-expressing dendritic cells (LAMP+ DCs) was assessed by IHC using aCD3, aCD68, aCD163, and aLAMP, respectively. Public TNBC datasets TCGA (N = 157) and METABRIC (N = 319) were interrogated for correlations between β–catenin- and immune-associated genes. Results: Three patient groups (N = 25/group) were identified according to the negative, medium and high intracellular expression of β–catenin. As opposed to β–cateninlow TNBC, the β–cateninhigh group displayed significantly lower CD3+ T cells (median 5% ±7.37 SD vs median 30% ± 18.28 SD, p < 0.0001) and LAMP+ DCs (median 1% ± 2.515 SD vs median 10% ± 7.038 SD, p < 0.0001). The β–cateninlow group was enriched in lymphocyte-predominant TNBC. For the first time, we show that the immune-suppressive, CD68+CD163+ TAMs were strongly accumulated in the β–cateninhigh group (median 20% ± 12.20 SD vs median 5% ± 6.831 SD, p < 0.0001). The interrogation of the public TNBC datasets TCGA and METABRIC confirmed that – after patient statification according to the expression level of a WNT/β–catenin gene-signature (i.e. MMP7, SFRP1, WNT10A, WNT16, WNT9B) – multiple TAM-associated genes – identified by our group in a single-cell RNAseq dataset – were strongly upregulated in WNT/β–cateninhigh signature, highlighting the role of the WNT/β–catenin signaling pathway not only in T-cell exclusion but also in selective TAM accumulation. Conclusions: Immune-suppressive TAMs are accumulated in β–cateninhigh, T-cell excluded TNBCs emphasizing the importance of tumor-intrinsic factors in shaping the quality of the immune infiltrate.


2019 ◽  
Vol 116 (9) ◽  
pp. 3678-3687 ◽  
Author(s):  
Xuefei Li ◽  
Tina Gruosso ◽  
Dongmei Zuo ◽  
Atilla Omeroglu ◽  
Sarkis Meterissian ◽  
...  

Infiltration of CD8+ T lymphocytes into solid tumors is associated with good prognosis in various types of cancer, including triple-negative breast cancer (TNBC). However, the mechanisms underlying different infiltration levels are largely unknown. Here, we have characterized the spatial profile of CD8+ T cells around tumor cell clusters (tightly connected tumor cells) in the core and margin regions in TNBC patient samples. We found that in some patients, the CD8+ T cell density first decreases when moving in from the boundary of the tumor cell clusters and then rises again when approaching the center. To explain various infiltration profiles, we modeled the dynamics of T cell density via partial differential equations. We spatially modulated the diffusion/chemotactic coefficients of T cells (to mimic physical barriers) or introduced the localized secretion of a diffusing T cell chemorepellent. Combining the spatial-profile analysis and the modeling led to support for the second idea; i.e., there exists a possible chemorepellent inside tumor cell clusters, which prevents CD8+ T cells from infiltrating into tumor cell clusters. This conclusion was consistent with an investigation into the properties of collagen fibers which suggested that variations in desmoplastic elements does not limit infiltration of CD8+ T lymphocytes, as we did not observe significant correlations between the level of T cell infiltration and fiber properties. Our work provides evidence that CD8+ T cells can cross typical fibrotic barriers and thus their infiltration into tumor clusters is governed by other mechanisms possibly involving a local repellent.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
John J. Tentler ◽  
Julie Lang ◽  
Anna Capasso ◽  
Deog Joong Kim ◽  
Ely Benaim ◽  
...  

Abstract Background Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited systemic treatment options. RX-5902 is a novel anti-cancer agent that inhibits phosphorylated-p68 and thus attenuates nuclear β-catenin signaling. The purpose of this study was to evaluate the ability of β-catenin signaling blockade to enhance the efficacy of anti-CTLA-4 and anti-PD-1 immune checkpoint blockade in immunocompetent, preclinical models of TNBC. Methods Treatment with RX-5902, anti-PD-1, anti-CTLA-4 or the combination was investigated in BALB/c mice injected with the 4 T1 TNBC cell line. Humanized BALB/c-Rag2nullIl2rγnullSIRPαNOD (hu-CB-BRGS) mice transplanted with a human immune system were implanted with MDA-MB-231 cells. Mice were randomized into treatment groups according to human hematopoietic chimerism and treated with RX-5902, anti-PD-1 or the combination. At sacrifice, bone marrow, lymph nodes, spleen and tumors were harvested for flow cytometry analysis of human immune cells. Results The addition of RX-5902 to CTLA-4 or PD-1 inhibitors resulted in decreased tumor growth in the 4 T1 and human immune system and MDA-MB-231 xenograft models. Immunologic analyses demonstrated a significant increase in the number of activated T cells in tumor infiltrating lymphocytes (TILs) with RX-5902 treatment compared to vehicle (p < 0.05). In the RX-5902/nivolumab combination group, there was a significant increase in the percentage of CD4+ T cells in TILs and increased systemic granzyme B production (p < 0.01). Conclusions Conclusions: RX-5902 enhanced the efficacy of nivolumab in a humanized, preclinical model of TNBC. Several changes in immunologic profiles were noted in mice treated with RX-5902 and the combination, including an increase in activated TILs and a decrease in human myeloid populations, that are often associated with immunosuppression in a tumor microenvironment. RX-5902 also was shown to potentiate the effects of checkpoint inhibitors of CTLA4 and the PD-1 inhibitor in the 4 T-1 murine TNBC model. These findings indicate that RX-5902 may have important immunomodulatory, as well as anti-tumor activity, in TNBC when combined with a checkpoint inhibitor.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3038 ◽  
Author(s):  
Masanori Oshi ◽  
Mariko Asaoka ◽  
Yoshihisa Tokumaru ◽  
Fernando A. Angarita ◽  
Li Yan ◽  
...  

Regulatory CD4+ T cell (Treg), a subset of tumor-infiltrating lymphocytes (TILs), are known to suppress anticancer immunity but its clinical relevance in human breast cancer remains unclear. In this study, we estimated the relative abundance of Tregs in breast cancer of multiple patient cohorts by using the xCell algorithm on bulk tumor gene expression data. In total, 5177 breast cancer patients from five independent cohorts (TCGA-BRCA, GSE96058, GSE25066, GSE20194, and GSE110590) were analyzed. Treg abundance was not associated with cancer aggressiveness, patient survival, or immune activity markers, but it was lower in metastatic tumors when compared to matched primary tumors. Treg was associated with a high mutation rate of TP53 genes and copy number mutations as well as with increased tumor infiltration of M2 macrophages and decreased infiltration of T helper type 1 (Th1) cells. Pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) was significantly associated with low Treg abundance in triple negative breast cancer (TNBC) but not in ER-positive/Her2-negative subtype. High Treg abundance was significantly associated with high tumor expression of multiple immune checkpoint inhibitor genes. In conclusion, Treg abundance may have potential as a predictive biomarker of pCR after NAC in TNBC.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A103-A103
Author(s):  
Brie Chun ◽  
Joanna Pucilowska ◽  
Shu Ching Chang ◽  
Isaac Kim ◽  
Benjamin Nikitin ◽  
...  

BackgroundPembrolizumab plus curative-intent dose-dense anthracycline-based chemotherapy (ddAC) is associated with improved outcome in PD-L1-negative TNBC,1 whereas in the metastatic setting, clinical benefit of chemoimmunotherapy (taxane or gemcitabine/carboplatin) is restricted to PD-L1-positive patients.2 We hypothesize that this discordance could be related to immunomodulatory differences of the various chemotherapies. On-treatment serial monitoring of peripheral blood and tumoral T cells can be used to compare the effects of various regimens. We also hypothesize that T cell clonal expansion may differ across the regimens, and that tumor-enriched T cell clones are more likely to be tumor-reactive and expand following chemoimmunotherapy.MethodsBlood and tumor samples were collected from patients enrolled in a phase Ib clinical trial of palliative pembrolizumab and paclitaxel or capecitabine for metastatic TNBC, and from a contemporaneous cohort of patients treated with ddAC. T-cells were characterized using fresh whole blood flow cytometry and T-cell receptor (TCR) immunosequencing (immunoSEQ, Adaptive Biotechnologies) of DNA digests. Longitudinal regression was used to test the hypothesis that tumor-enriched T-cell clonotypes are more likely to expand in peripheral blood following therapy.ResultsWhen combined with pembrolizumab, paclitaxel versus capecitabine had similar effects on T-cells, resulting in a time-dependent lymphodepletion across all major T cell subsets (average CD3+ T cell fold-change capecitabine: -0.42, paclitaxel: -0.56, p = 0.80 t-test), whereas ddAC was associated with more profound lymphodepletion (CD3+ average fold-change: -1.21). Notably, ddAC was associated with higher odds of novel clonotype detection compared to capecitabine (odds ratio (OR): 3.42, 95% CI: 3.34–3.5) as well as compared to paclitaxel (OR: 1.53, 95% CI: 1.47–1.60). Significant expansion of tumoral clonotypes occurred in five patients receiving chemoimmunotherapy (average 4.2 unique clonotypes per patient, range 2–11). These clonotypes did not significantly expand over time in the blood. Similarly, T-cell clonotypes that were enriched within tumor did not exhibit measurable differences in serial trend within the peripheral blood.ConclusionsEffects to T cell subsets and clonotypes are similar between capecitabine and paclitaxel when combined with pembrolizumab. ddAC was more profoundly lymphotoxic, but resulted in greater clonotype expansion. These findings offer mechanistic insight onto the differences in clinical activity observed with chemoimmunotherapy in early stage versus metastatic TNBC. We observed no strong association between tumor clonotype enrichment and peripheral clonotype expansion, highlighting the unmet need to develop methods of monitoring tumor-reactive T cell clones in the context of immunotherapy.AcknowledgementsThe authors would like to acknowledge collaborators at the Earle A. Chiles Research Institute and Adaptive Biotechnologies for mentorship and guidance. Support for the clinical trial (NCT02734290), which comprised the metastatic cohort was provided by Merck and the Providence Opportunity Fund. Laboratory services were provided at no cost by Adaptive BiotechnologiesTrial RegistrationNCT02734290ReferencesSchmid P, Cortes J, Pusztai L, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med 2020 Feb 27;382(9):810–821. doi: 10.1056/NEJMoa1910549.Cortes J, Cescon DW, Rugo HS, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 2020;396(10265):1817–1828. doi:10.1016/S0140-6736(20)32531-9Ethics ApprovalAll patients provided written, informed consent. The study protocols for the collection of specimens from the early-stage breast cancer cohort and from the metastatic TNBC clinical trial were separately approved by independent review boards at Providence Portland Medical Center and Cedars Sinai Medical Center (mTNBC clinical trial only).


Sign in / Sign up

Export Citation Format

Share Document