scholarly journals An Emerging Role of m6A in Memory: A Case for Translational Priming

2020 ◽  
Vol 21 (20) ◽  
pp. 7447
Author(s):  
Amanda M. Leonetti ◽  
Ming Yin Chu ◽  
Fiona O. Ramnaraign ◽  
Samuel Holm ◽  
Brandon J. Walters

Investigation into the role of methylation of the adenosine base (m6A) of RNA has only recently begun, but it quickly became apparent that m6A is able to control and fine-tune many aspects of mRNA, from splicing to translation. The ability of m6A to regulate translation distally, away from traditional sites near the nucleus, quickly caught the eye of neuroscientists because of implications for selective protein translation at synapses. Work in the brain has demonstrated how m6A is functionally required for many neuronal functions, but two in particular are covered at length here: The role of m6A in 1) neuron development; and 2) memory formation. The purpose of this review is not to cover all data about m6A in the brain. Instead, this review will focus on connecting mechanisms of m6A function in neuron development, with m6A’s known function in memory formation. We will introduce the concept of “translational priming” and discuss how current data fit into this model, then speculate how m6A-mediated translational priming during memory consolidation can regulate learning and memory locally at the synapse.

Author(s):  
Jay Schulkin

Chapter 7 speaks about how, while CRF is intimately involved in organ development, it is also linked to devolution of function and conditions of danger. CRF expression itself reveals developmental changes particularly in the brain. CRF is linked to diverse forms of learning and timing of events. But CRF may either enhance or degrade learning and memory. CRF tends to enhance salience and visibility, therefore learning and memory consolidation may be enhanced. However, excessive CRF expression begins to compromise these essential capabilities and promotes neural atrophy deterioration. The role of information molecules is to promote survival systems across life cycles. On the adaptive side, CRF promotes change and attention to change; on the nonadaptive side, CRF promotes decreased tissue capability and the acceleration of an aging process in end organ systems, as this chapter will discuss.


2014 ◽  
Vol 16 (3) ◽  
pp. 359-371 ◽  

Dynamic regulation of chromatin structure in postmitotic neurons plays an important role in learning and memory. Methylation of cytosine nucleotides has historically been considered the strongest and least modifiable of epigenetic marks. Accumulating recent data suggest that rapid and dynamic methylation and demethylation of specific genes in the brain may play a fundamental role in learning, memory formation, and behavioral plasticity. The current review focuses on the emergence of data that support the role of DNA methylation and demethylation, and its molecular mediators in memory formation.


MicroRNA ◽  
2020 ◽  
Vol 09 ◽  
Author(s):  
Sadniman Rahman ◽  
Chaity Modak ◽  
Mousumi Akter ◽  
Mohammad Shamimul Alam

Background: Learning and memory is basic aspects in neurogenetics as most of the neurological disorders start with dementia or memory loss. Several genes associated with memory formation have been discovered. MicroRNA genes miR-1000 and miR-375 were reported to be associated with neural integration and glucose homeostasis in some insects and vertebrates. However, neuronal function of these genes is yet to be established in D. melanogaster. Objective: Possible role of miR-1000 and miR-375 in learning and memory formation in this fly has been explored in the present study. Methods: Both appetitive and aversive olfactory conditional learning were tested in the miR-1000 and miR-375 knockout (KO) strains and compared with wild one. Five days old third instar larvae were trained by allowing them to be associated with an odor with reward (fructose) or punishment (salt). Then, the larvae were tested to calculate their preferences to the odor trained with. Learning index (LI) values and larval locomotion speed were calculated for all strains. Results: No significant difference was observed for larval locomotion speed in mutant strains. Knockout strain of miR-1000 showed significant deficiency in both appetitive and aversive memory formation whereas miR-375 KO strain showed a significantly lower response only in appetitive one. Conclusion: The results of the present study indicate important role played by these two genes in forming short-term memory in D. melanogaster.


2021 ◽  
Author(s):  
Daniel Ramirez-Gordillo ◽  
Andrew A. Parra ◽  
K. Ulrich Bayer ◽  
Diego Restrepo

Learning and memory requires coordinated activity between different regions of the brain. Here we studied the interaction between medial prefrontal cortex (mPFC) and hippocampal dorsal CA1 during associative odorant discrimination learning in the mouse. We found that as the animal learns to discriminate odorants in a go-no go task the coupling of high frequency neural oscillations to the phase of theta oscillations (phase-amplitude coupling or PAC) changes in a manner that results in divergence between rewarded and unrewarded odorant-elicited changes in the theta-phase referenced power (tPRP) for beta and gamma oscillations. In addition, in the proficient animal there was a decrease in the coordinated oscillatory activity between CA1 and mPFC in the presence of the unrewarded odorant. Furthermore, the changes in PAC resulted in a marked increase in the accuracy for decoding odorant identity from tPRP when the animal became proficient. Finally, we studied the role of Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα), a protein involved in learning and memory, in oscillatory neural processing in this task. We find that the accuracy for decoding the odorant identity from tPRP decreases in CaMKIIα knockout mice and that this accuracy correlates with behavioral performance. These results implicate a role for PAC and CaMKIIα in olfactory go-no go associative learning in the hippocampal-prefrontal circuit.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Yumin Zhang ◽  
Gang Liu ◽  
Jingqi Yan ◽  
Yalin Zhang ◽  
Bo Li ◽  
...  

2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Lia R. M. Bevilaqua ◽  
Janine I. Rossato ◽  
Juliana S. Bonini ◽  
Jociane C. Myskiw ◽  
Julia R. Clarke ◽  
...  

The entorhinal cortex is perhaps the area of the brain in which neurofibrillary tangles and amyloid plaques are first detectable in old age with or without mild cognitive impairment, and very particularly in Alzheimer's disease. It plays a key role in memory formation, retrieval, and extinction, as part of circuits that include the hippocampus, the amygdaloid nucleus, and several regions of the neocortex, in particular of the prefrontal cortex. Lesions or biochemical impairments of the entorhinal cortex hinder extinction. Microinfusion experiments have shown that glutamate NMDA receptors, calcium and calmodulin-dependent protein kinase II, and protein synthesis in the entorhinal cortex are involved in and required for extinction. Aging also hinders extinction; it is possible that its effect may be in part mediated by the entorhinal cortex.


1998 ◽  
Vol 6 (3) ◽  
pp. 29-40 ◽  
Author(s):  
Chris Lancashire ◽  
Radmila Mileusnic ◽  
Steven P.R. Rose

Isoforms of apolipoprotein E (ApoE) have been implicated as risk factors in Alzheimer’s disease. We have, therefore, examined the possible role of ApoE in memory formation, using a one-trial passive avoidance task in day-old chicks. Birds were trained on the task and then at various times pre or post-training were injected intracerebrally with anti-ApoE. Immunofluorescence staining demonstrated the presence of the antibody bound to the neuropil, close to the injection site and adjacent to the ventricle, with a residence time in the brain of up to 30 min. Chicks that were injected 30 min pre-training or just post-training with 5μg/ hemisphere of the antibody learned the task, but were amnesic when tested at 30 min or at subsequent times up to 24 hr Post-training. When tested at 24 hr, birds injected 5.5 hr post-training showed unimpaired retention. Birds injected with 5μg/hemisphere of anti-ApoA-I (which has a brain distribution similar to that of anti-ApoE) at 30 min pretraining showed no amnesia, indicating the specificity of the effect to the ApoE. Possible mechanisms for this effect are discussed.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 580-580
Author(s):  
Irina Portier ◽  
Frederik Denorme ◽  
Kimberly A Queisser ◽  
Yasuhiro Kosaka ◽  
Aaron C Petrey ◽  
...  

Abstract Background: Cerebral malaria is a highly prevalent infectious disease in Sub-Saharan Africa caused by the Plasmodium parasite. The pathogenesis of cerebral malaria results from damaged vascular endothelium induced by parasite sequestration, inflammatory cytokine production and vascular leakage, which results in increased brain permeability and death. While maladaptive responses from immune cells are thought to contribute, growing evidence suggests a crucial role of platelets in malaria pathophysiology. The mammalian target of rapamycin (mTOR) pathway is critical in regulating outcomes in malaria. Previous studies have demonstrated an mTOR specific inhibitor, rapamycin, is protective in a mouse model of experimental cerebral malaria (ECM). However, if the mTOR pathway in platelets specifically contributes to the pathogenesis of malaria is unknown. Methods: Platelet-specific mTOR-deficient (mTOR plt-/-) mice and littermate controls were subjected to a well-established model of ECM, using Plasmodium berghei ANKA. In addition, platelets isolated from human malaria patients were examined for differential regulation of the mTOR pathway using RNA-seq. Results: Platelet RNA-seq and Ingenuity Pathway Analysis from patients infected with P. vivax demonstrated enrichment of mTOR-associated pathways in platelets, such as mTOR signaling and p70S6K signaling, indicating mTOR associated genes are upregulated in human platelets during malaria infection. In mice infected with P. berghei ANKA, the mTOR pathway was activated in bone marrow-megakaryocytes and platelets based on phosphorylation of mTOR and its downstream effector, 4E-BP1. As the mTOR pathway regulates protein translation in platelets, we examined de novo protein synthesis and observed increased protein translation in platelets isolated from mice infected with P. berghei ANKA compared to uninfected controls. To study the specific role of platelet mTOR during ECM pathogenesis, mTOR plt-/- mice and wild-type controls (mTOR plt+/+), were infected with P. berghei ANKA. Platelet deficient-mTOR mice had significantly (p=0.0336) prolonged survival compared to wild-type mice. Increased survival was independent of parasitemia, suggesting platelets did not alter parasite reproduction. While thrombocytopenia and anemia were similar in both genotypes, mTOR plt-/- mice had significantly reduced brain (p=0.0067) and lung (p<0.0001) vascular permeability during late-stage ECM. Interestingly, flow cytometric assessment of leukocyte recruitment to the brain demonstrated a 1.7-fold (p=0.0442) reduction in inflammatory monocytes in platelet-deficient mTOR mice. However, mTOR plt-/- mice had significantly (1.4-fold, p=0.007) more inflammatory monocytes in the blood. Interestingly, circulating platelet-monocytes aggregates were significantly less in mTOR plt-/- compared to mTOR plt+/+ (p=0.0433). Taken together, these results suggest that platelets assist in the recruitment of leukocytes to the brain vasculature during ECM, which is impaired when mTOR is ablated. Conclusions: Our data demonstrates that the mTOR pathway in platelets plays a significant role in malaria pathogenesis. Deletion of platelet mTOR reduces vascular permeability and prolongs survival during ECM. We hypothesize that altered platelet-inflammatory monocyte interactions drive this phenotype. Disclosures Rondina: Platelet Transcriptomics: Patents & Royalties; Acticor Biotech: Membership on an entity's Board of Directors or advisory committees; Platelet Biogenesis: Membership on an entity's Board of Directors or advisory committees; Novartis: Research Funding.


2020 ◽  
Vol 24 (8) ◽  
pp. 885-896
Author(s):  
L. N. Grinkevich

The mechanisms of long-term memory formation and ways to improve it (in the case of its impairment) remain an extremely difficult problem yet to be solved. Over the recent years, much attention has been paid to microRNAs in this regard. MicroRNAs are unique endogenous non-coding RNAs about 22 nucleotides in length; each can regulate translation of hundreds of messenger RNA targets, thereby controlling entire gene networks. MicroRNAs are widely represented in the central nervous system. A large number of studies are currently being conducted to investigate the role of microRNAs in the brain functioning. A number of microRNAs have been shown to be involved in the process of synaptic plasticity, as well as in the long-term memory formation. Disruption of microRNA biogenesis leads to significant cognitive dysfunctions. Moreover, impaired microRNA biogenesis is one of the causes of the pathogenesis of mental disorders, neurodegenerative illnesses and senile dementia, which are often accompanied by deterioration in the learning ability and by memory impairment. Optimistic predictions are made that microRNAs can be used as targets for therapeutic treatment and for diagnosing the above pathologies. The importance of applications related to microRNAs significantly raises interest in studying their functions in the brain. Thus, this review is focused on the role of microRNAs in cognitive processes. It describes microRNA biogenesis and the role of miRNAs in the regulation of gene expression, as well as the latest achievements in studying the functional role of microRNAs in learning and in long-term memory formation, depending on the activation or inhibition of their expression. The review presents summarized data on the effect of impaired microRNA biogenesis on long-term memory formation, including those associated with sleep deprivation. In addition, analysis is provided of the current literature related to the prospects of improving cognitive processes by influencing microRNA biogenesis via the use of CRISPR/Cas9 technologies and active mental and physical exercises.


Sign in / Sign up

Export Citation Format

Share Document