scholarly journals Apolipoprotein E Antibodies Affect the Retention of Passive Avoidance Memory in the Chick

1998 ◽  
Vol 6 (3) ◽  
pp. 29-40 ◽  
Author(s):  
Chris Lancashire ◽  
Radmila Mileusnic ◽  
Steven P.R. Rose

Isoforms of apolipoprotein E (ApoE) have been implicated as risk factors in Alzheimer’s disease. We have, therefore, examined the possible role of ApoE in memory formation, using a one-trial passive avoidance task in day-old chicks. Birds were trained on the task and then at various times pre or post-training were injected intracerebrally with anti-ApoE. Immunofluorescence staining demonstrated the presence of the antibody bound to the neuropil, close to the injection site and adjacent to the ventricle, with a residence time in the brain of up to 30 min. Chicks that were injected 30 min pre-training or just post-training with 5μg/ hemisphere of the antibody learned the task, but were amnesic when tested at 30 min or at subsequent times up to 24 hr Post-training. When tested at 24 hr, birds injected 5.5 hr post-training showed unimpaired retention. Birds injected with 5μg/hemisphere of anti-ApoA-I (which has a brain distribution similar to that of anti-ApoE) at 30 min pretraining showed no amnesia, indicating the specificity of the effect to the ApoE. Possible mechanisms for this effect are discussed.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Juhyun Song ◽  
Won Taek Lee ◽  
Kyung Ah Park ◽  
Jong Eun Lee

Vascular dementia is caused by various factors, including increased age, diabetes, hypertension, atherosclerosis, and stroke. Adiponectin is an adipokine secreted by adipose tissue. Adiponectin is widely known as a regulating factor related to cardiovascular disease and diabetes. Adiponectin plasma levels decrease with age. Decreased adiponectin increases the risk of cardiovascular disease and diabetes. Adiponectin improves hypertension and atherosclerosis by acting as a vasodilator and antiatherogenic factor. Moreover, adiponectin is involved in cognitive dysfunction via modulation of insulin signal transduction in the brain. Case-control studies demonstrate the association between low adiponectin and increased risk of stroke, hypertension, and diabetes. This review summarizes the recent findings on the association between risk factors for vascular dementia and adiponectin. To emphasize this relationship, we will discuss the importance of research regarding the role of adiponectin in vascular dementia.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Lia R. M. Bevilaqua ◽  
Janine I. Rossato ◽  
Juliana S. Bonini ◽  
Jociane C. Myskiw ◽  
Julia R. Clarke ◽  
...  

The entorhinal cortex is perhaps the area of the brain in which neurofibrillary tangles and amyloid plaques are first detectable in old age with or without mild cognitive impairment, and very particularly in Alzheimer's disease. It plays a key role in memory formation, retrieval, and extinction, as part of circuits that include the hippocampus, the amygdaloid nucleus, and several regions of the neocortex, in particular of the prefrontal cortex. Lesions or biochemical impairments of the entorhinal cortex hinder extinction. Microinfusion experiments have shown that glutamate NMDA receptors, calcium and calmodulin-dependent protein kinase II, and protein synthesis in the entorhinal cortex are involved in and required for extinction. Aging also hinders extinction; it is possible that its effect may be in part mediated by the entorhinal cortex.


2020 ◽  
Vol 21 (20) ◽  
pp. 7447
Author(s):  
Amanda M. Leonetti ◽  
Ming Yin Chu ◽  
Fiona O. Ramnaraign ◽  
Samuel Holm ◽  
Brandon J. Walters

Investigation into the role of methylation of the adenosine base (m6A) of RNA has only recently begun, but it quickly became apparent that m6A is able to control and fine-tune many aspects of mRNA, from splicing to translation. The ability of m6A to regulate translation distally, away from traditional sites near the nucleus, quickly caught the eye of neuroscientists because of implications for selective protein translation at synapses. Work in the brain has demonstrated how m6A is functionally required for many neuronal functions, but two in particular are covered at length here: The role of m6A in 1) neuron development; and 2) memory formation. The purpose of this review is not to cover all data about m6A in the brain. Instead, this review will focus on connecting mechanisms of m6A function in neuron development, with m6A’s known function in memory formation. We will introduce the concept of “translational priming” and discuss how current data fit into this model, then speculate how m6A-mediated translational priming during memory consolidation can regulate learning and memory locally at the synapse.


2019 ◽  
Vol 25 ◽  
pp. 107602961985942 ◽  
Author(s):  
Beata Sarecka-Hujar ◽  
Izabela Szołtysek-Bołdys ◽  
Ilona Kopyta ◽  
Barbara Dolińska ◽  
Andrzej Sobczak

Epilepsy is a disease arising from morphological and metabolic changes in the brain. Approximately 60% of patients with seizures can be controlled with 1 antiepileptic drug (AED), while in others, polytherapy is required. The AED treatment affects a number of biochemical processes in the body, including increasing the risk of cardiovascular diseases (CVDs). It is indicated that the duration of AED therapy with some AEDs significantly accelerates the process of atherosclerosis. Most of AEDs increase levels of homocysteine (HCys) as well as may affect concentrations of new, nonclassical risk factors for atherosclerosis, that is, asymmetric dimethylarginine (ADMA) and homoarginine (hArg). Because of the role of these parameters in the pathogenesis of CVD, knowledge of HCys, ADMA, and hArg concentrations in patients with epilepsia treated with AED, both pediatric and adult, appears to be of significant importance.


2009 ◽  
Vol 17 (4) ◽  
pp. 257-267 ◽  
Author(s):  
Hend M. Shubar ◽  
Ildiko R. Dunay ◽  
Sabrina Lachenmaier ◽  
Margitta Dathe ◽  
Faris Nadiem Bushrab ◽  
...  
Keyword(s):  

2020 ◽  
Vol 24 (8) ◽  
pp. 885-896
Author(s):  
L. N. Grinkevich

The mechanisms of long-term memory formation and ways to improve it (in the case of its impairment) remain an extremely difficult problem yet to be solved. Over the recent years, much attention has been paid to microRNAs in this regard. MicroRNAs are unique endogenous non-coding RNAs about 22 nucleotides in length; each can regulate translation of hundreds of messenger RNA targets, thereby controlling entire gene networks. MicroRNAs are widely represented in the central nervous system. A large number of studies are currently being conducted to investigate the role of microRNAs in the brain functioning. A number of microRNAs have been shown to be involved in the process of synaptic plasticity, as well as in the long-term memory formation. Disruption of microRNA biogenesis leads to significant cognitive dysfunctions. Moreover, impaired microRNA biogenesis is one of the causes of the pathogenesis of mental disorders, neurodegenerative illnesses and senile dementia, which are often accompanied by deterioration in the learning ability and by memory impairment. Optimistic predictions are made that microRNAs can be used as targets for therapeutic treatment and for diagnosing the above pathologies. The importance of applications related to microRNAs significantly raises interest in studying their functions in the brain. Thus, this review is focused on the role of microRNAs in cognitive processes. It describes microRNA biogenesis and the role of miRNAs in the regulation of gene expression, as well as the latest achievements in studying the functional role of microRNAs in learning and in long-term memory formation, depending on the activation or inhibition of their expression. The review presents summarized data on the effect of impaired microRNA biogenesis on long-term memory formation, including those associated with sleep deprivation. In addition, analysis is provided of the current literature related to the prospects of improving cognitive processes by influencing microRNA biogenesis via the use of CRISPR/Cas9 technologies and active mental and physical exercises.


Author(s):  
Jared W. Feinman ◽  
John G. Augoustides

Despite recent advances, aortic surgery and stenting for an array of diseases still pose a significant risk of permanent and severe injury to the brain and/or spinal cord. These neurological risks are best understood in terms of the primary disease pathology, the extent of aortic involvement, mechanisms and risk factors, the role of neuromonitoring modalities, and the surgical techniques required for repair. This chapter will present an overview of perioperative practice in aortic surgery and stenting based on this framework and the latest guidelines and trials in order to describe best practices and promising options for neuroprotection in this challenging clinical setting.


Sign in / Sign up

Export Citation Format

Share Document