scholarly journals Role of AT1G72910, AT1G72940, and ADR1-LIKE 2 in Plant Immunity under Nonsense-Mediated mRNA Decay-Compromised Conditions at Low Temperatures

2020 ◽  
Vol 21 (21) ◽  
pp. 7986
Author(s):  
Zeeshan Nasim ◽  
Muhammad Fahim ◽  
Katarzyna Gawarecka ◽  
Hendry Susila ◽  
Suhyun Jin ◽  
...  

Nonsense-mediated mRNA decay (NMD) removes aberrant transcripts to avoid the accumulation of truncated proteins. NMD regulates nucleotide-binding, leucine-rich repeat (NLR) genes to prevent autoimmunity; however, the function of a large number of NLRs still remains poorly understood. Here, we show that three NLR genes (AT1G72910, AT1G72940, and ADR1-LIKE 2) are important for NMD-mediated regulation of defense signaling at lower temperatures. At 16 °C, the NMD-compromised up-frameshift protein1 (upf1) upf3 mutants showed growth arrest that can be rescued by the artificial miRNA-mediated knockdown of the three NLR genes. mRNA levels of these NLRs are induced by Pseudomonas syringae inoculation and exogenous SA treatment. Mutations in AT1G72910, AT1G72940, and ADR1-LIKE 2 genes resulted in increased susceptibility to Pseudomonas syringae, whereas their overexpression resulted in severely stunted growth, which was dependent on basal disease resistance genes. The NMD-deficient upf1 upf3 mutants accumulated higher levels of NMD signature-containing transcripts from these NLR genes at 16 °C. Furthermore, mRNA degradation kinetics showed that these NMD signature-containing transcripts were more stable in upf1 upf3 mutants. Based on these findings, we propose that AT1G72910, AT1G72940, and ADR1-LIKE 2 are directly regulated by NMD in a temperature-dependent manner and play an important role in modulating plant immunity at lower temperatures.

2021 ◽  
Author(s):  
Anna Golisz ◽  
Michal Krzyszton ◽  
Monika Stepien ◽  
Jakub Dolata ◽  
Justyna Piotrowska ◽  
...  

SmD3 is a core component of the small nuclear ribonucleoprotein (snRNP) that is essential for pre-mRNA splicing. The role of Arabidopsis SmD3 in plant immunity was assessed by testing sensitivity of smd3a and smd3b mutants to Pseudomonas syringae pv. tomato (Pst) DC3000 infection and its pathogenesis effectors flagellin (flg22), EF-Tu (elf18) and coronatine (COR). Both smd3 mutants exhibited enhanced susceptibility to Pst accompanied by marked changes in the expression of key pathogenesis markers. mRNA levels of these factors were also altered upon treatment with Pseudomonas effectors. We showed that SmD3-b dysfunction impairs mainly stomatal immunity as a result of defects in stomatal development. Our genome-wide transcriptome analysis of the smd3b-1 mutant infected with Pst revealed that lack of SmD3-b deregulates defense against Pst infection at the transcriptional and posttranscriptional levels including defects in splicing and an altered pattern of alternative splicing. Other changes in the smd3b-1 mutant involved enhanced elf18- and flg22-induced callose deposition, reduction of flg22-triggered production of early ROS and boost of secondary ROS caused by Pst infection. Together, our data indicate that SmD3 contributes to the plant immune response possibly via regulation of mRNA splicing of key pathogenesis factors.


2020 ◽  
Author(s):  
Ning Zhang ◽  
Marina A Pombo ◽  
Hernan G Rosli ◽  
Gregory B Martin

Wall-associated kinases (Waks) are known to be important components of plant immunity against various pathogens including Pseudomonas syringae pv. tomato (Pst) although their molecular mechanisms are largely unknown. In tomato, SlWak1 has been implicated in immunity because its transcript abundance increases significantly in leaves after treatment with the flagellin-derived peptides flg22 and flgII-28, which activate the receptors Fls2 and Fls3, respectively. We generated two SlWak1 tomato mutants (Δwak1) using CRISPR/Cas9 and investigated the role of SlWak1 in tomato-Pst interactions. PTI activated in the apoplast by flg22 or flgII-28 was compromised in Δwak1 plants but PTI at the leaf surface was unaffected. The Δwak1 plants developed fewer callose deposits than wild-type plants but retained the ability to generate reactive oxygen species and activate MAPKs in response to flg22 and flgII-28. The induction of Wak1 gene expression by flg22 and flgII-28 was greatly reduced in a tomato mutant lacking Fls2 and Fls3 but induction of Fls3 gene expression by flgII-28 was unaffected in Δwak1 plants. After Pst inoculation, Δwak1 plants developed disease symptoms more slowly than Δfls2.1/fls2.2/fls3 mutant plants, although both plants ultimately were similarly susceptible. SlWak1 co-immunoprecipitated with both Fls2 and Fls3 independently of flg22/flgII-28 or Bak1. These observations suggest that SlWak1 acts in a complex with Fls2/Fls3 and plays an important role at later stages of the PTI in the apoplast.


1995 ◽  
Vol 15 (4) ◽  
pp. 2231-2244 ◽  
Author(s):  
S Zhang ◽  
M J Ruiz-Echevarria ◽  
Y Quan ◽  
S W Peltz

In both prokaryotes and eukaryotes, nonsense mutations in a gene can enhance the decay rate or reduce the abundance of the mRNA transcribed from that gene, and we call this process nonsense-mediated mRNA decay. We have been investigating the cis-acting sequences involved in this decay pathway. Previous experiments have demonstrated that, in addition to a nonsense codon, specific sequences 3' of a nonsense mutation, which have been defined as downstream elements, are required for mRNA destabilization. The results presented here identify a sequence motif (TGYYGATGYYYYY, where Y stands for either T or C) that can predict regions in genes that, when positioned 3' of a nonsense codon, promote rapid decay of its mRNA. Sequences harboring two copies of the motif from five regions in the PGK1, ADE3, and HIS4 genes were able to function as downstream elements. In addition, four copies of this motif can function as an independent downstream element. The sequences flanking the motif played a more significant role in modulating its activity when fewer copies of the sequence motif were present. Our results indicate the sequences 5' of the motif can modulate its activity by maintaining a certain distance between the sequence motif and the termination codon. We also suggest that the sequences 3' of the motif modulate the activity of the downstream element by forming RNA secondary structures. Consistent with this view, a stem-loop structure positioned 3' of the sequence motif can enhance the activity of the downstream element. This sequence motif is one of the few elements that have been identified that can predict regions in genes that can be involved in mRNA turnover. The role of these sequences in mRNA decay is discussed.


2021 ◽  
Author(s):  
Sarah E. Fritz ◽  
Soumya Ranganathan ◽  
J. Robert Hogg

AbstractThe nonsense-mediated mRNA decay (NMD) pathway monitors translation termination to degrade transcripts with premature stop codons and regulate thousands of human genes. Due to the major role of NMD in RNA quality control and gene expression regulation, it is important to understand how the pathway responds to changing cellular conditions. Here we show that an alternative mammalian-specific isoform of the core NMD factor UPF1, termed UPF1LL, enables condition-dependent remodeling of NMD specificity. UPF1LL associates more stably with potential NMD target mRNAs than the major UPF1SL isoform, expanding the scope of NMD to include many transcripts normally immune to the pathway. Unexpectedly, the enhanced persistence of UPF1LL on mRNAs supports induction of NMD in response to rare translation termination events. Thus, while canonical NMD is abolished by translational repression, UPF1LL activity is enhanced, providing a mechanism to rapidly rewire NMD specificity in response to cellular stress.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 765 ◽  
Author(s):  
Kamila Pawlicka ◽  
Umesh Kalathiya ◽  
Javier Alfaro

Nonsense-mediated messenger RNA (mRNA) decay (NMD) is a surveillance pathway used by cells to control the quality mRNAs and to fine-tune transcript abundance. NMD plays an important role in cell cycle regulation, cell viability, DNA damage response, while also serving as a barrier to virus infection. Disturbance of this control mechanism caused by genetic mutations or dys-regulation of the NMD pathway can lead to pathologies, including neurological disorders, immune diseases and cancers. The role of NMD in cancer development is complex, acting as both a promoter and a barrier to tumour progression. Cancer cells can exploit NMD for the downregulation of key tumour suppressor genes, or tumours adjust NMD activity to adapt to an aggressive immune microenvironment. The latter case might provide an avenue for therapeutic intervention as NMD inhibition has been shown to lead to the production of neoantigens that stimulate an immune system attack on tumours. For this reason, understanding the biology and co-option pathways of NMD is important for the development of novel therapeutic agents. Inhibitors, whose design can make use of the many structures available for NMD study, will play a crucial role in characterizing and providing diverse therapeutic options for this pathway in cancer and other diseases.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 506-506
Author(s):  
Joachim Weischenfeldt ◽  
Inge Damgaard ◽  
David Bryder ◽  
Claus Nerlov ◽  
Bo Porse

Abstract Nonsense-mediated mRNA decay (NMD) is a conserved cellular surveillance system that degrades mRNAs with premature termination codons (PTCs). PTC-containing transcripts can arise from faulty events such as erroneous mRNA processing events as well as mutations, and their translation may lead to the synthesis of deleterious proteins. In addition to serving as a genomic protection system, experiments in tissue culture cells have demonstrated that NMD regulates 5% of the normal mRNA pool suggesting that the NMD pathway may have a broader role in gene regulation. Finally, NMD has also been proposed to be important during lymphocyte development as a tool of riding the cells of transcripts resulting from unproductive re-arrangements events of T cell receptor and immunoglobulin genes. Although NMD has been studied extensively at the biochemical level, the actual role and importance of NMD in the mammalian organism has not been investigated. We therefore generated a conditional Upf2 knock-out mouse line (UPF2 being an essential NMD factor) which we crossed to different hematopoietic relevant Cre expressing lines. Full ablation of UPF2 (using the inducible Mx1-Cre deleter) led to complete loss of all nucleated cells in the bone marrow and death of the animals within 10 days. A similar phenotype was observed when Upf2fl/fl; Mx1Cre BM cells were transplanted into lethally irradiated WT recipients and induced with poly-IC, demonstrating the cell autonomous nature of the phenotype. Deletion of UPF2 in the myeloid lineage using the LysM-Cre deleter resulted in efficient ablation of UPF2 and the absence of NMD in reporter transfected bone marrow derived macrophages (BMDMs). However, the steady state levels of myeloid cells appeared unaltered. Finally, deletion of UPF2 in T cells using a Lck-Cre deleter led to a marked reduction of both CD4/CD8 double-positive and single-positive T cells and accumulation of PTC containing transcripts. Gene expression profiling experiments of BMDM and thymocytes from WT and UPF2-ablated animals identified a common core set of 27 up-regulated genes consistent with the role of NMD as a mRNA degrading system. The gene expression profiling data suggest that ablation of NMD leads to accumulation of unfolded proteins. In summary, these studies demonstrate the vital and cell-autonomous role of NMD in the hematopoietic system.


2013 ◽  
Vol 45 (18) ◽  
pp. 866-875 ◽  
Author(s):  
Christine E. Genge ◽  
William S. Davidson ◽  
Glen F. Tibbits

The teleost-specific whole genome duplication created multiple copies of genes allowing for subfunctionalization of isoforms. In this study, we show that the teleost cardiac Ca2+-binding troponin C (TnC) is the product of two distinct genes: cardiac TnC (cTnC, TnnC1a) and a fish-specific slow skeletal TnC (ssTnC, TnnC1b). The ssTnC gene is novel to teleosts as mammals have a single gene commonly referred as cTnC but which is also expressed in slow skeletal muscle. In teleosts, the data strongly indicate that these are two TnC genes are different paralogs. Because we determined that ssTnC exists across many teleosts but not in basal ray-finned fish (e.g., bichir), we propose that these paralogs are the result of an ancestral tandem gene duplication persisting only in teleosts. Quantification of mRNA levels was used to demonstrate distinct expression localization patterns of the paralogs within the chambers of the heart. In the adult zebrafish acclimated at 28°C, ssTnC mRNA levels are twofold greater than cTnC mRNA levels in the atrium, whereas cTnC mRNA was almost exclusively expressed in the ventricle. Meanwhile, rainbow trout acclimated at 5°C showed cTnC mRNA levels in both chambers significantly greater than ssTnC. Distinct responses to temperature acclimation were also quantified in both adult zebrafish and rainbow trout, with mRNA in both chambers shifting to express higher levels of cTnC in 18°C acclimated zebrafish and 5°C acclimated trout. Possible subfunctionalization of TnC isoforms may provide insight into how teleosts achieve physiological versatility in chamber-specific contractile properties.


2004 ◽  
Vol 24 (17) ◽  
pp. 7483-7490 ◽  
Author(s):  
Andrew Grimson ◽  
Sean O'Connor ◽  
Carrie Loushin Newman ◽  
Philip Anderson

ABSTRACT Eukaryotic messenger RNAs containing premature stop codons are selectively and rapidly degraded, a phenomenon termed nonsense-mediated mRNA decay (NMD). Previous studies with both Caenohabditis elegans and mammalian cells indicate that SMG-2/human UPF1, a central regulator of NMD, is phosphorylated in an SMG-1-dependent manner. We report here that smg-1, which is required for NMD in C. elegans, encodes a protein kinase of the phosphatidylinositol kinase superfamily of protein kinases. We identify null alleles of smg-1 and demonstrate that SMG-1 kinase activity is required in vivo for NMD and in vitro for SMG-2 phosphorylation. SMG-1 and SMG-2 coimmunoprecipitate from crude extracts, and this interaction is maintained in smg-3 and smg-4 mutants, both of which are required for SMG-2 phosphorylation in vivo and in vitro. SMG-2 is located diffusely through the cytoplasm, and its location is unaltered in mutants that disrupt the cycle of SMG-2 phosphorylation. We discuss the role of SMG-2 phosphorylation in NMD.


Sign in / Sign up

Export Citation Format

Share Document