scholarly journals The Cellular Prion Protein: A Promising Therapeutic Target for Cancer

2020 ◽  
Vol 21 (23) ◽  
pp. 9208
Author(s):  
Gyeongyun Go ◽  
Sang Hun Lee

Studies on the cellular prion protein (PrPC) have been actively conducted because misfolded PrPC is known to cause transmissible spongiform encephalopathies or prion disease. PrPC is a glycophosphatidylinositol-anchored cell surface glycoprotein that has been reported to affect several cellular functions such as stress protection, cellular differentiation, mitochondrial homeostasis, circadian rhythm, myelin homeostasis, and immune modulation. Recently, it has also been reported that PrPC mediates tumor progression by enhancing the proliferation, metastasis, and drug resistance of cancer cells. In addition, PrPC regulates cancer stem cell properties by interacting with cancer stem cell marker proteins. In this review, we summarize how PrPC promotes tumor progression in terms of proliferation, metastasis, drug resistance, and cancer stem cell properties. In addition, we discuss strategies to treat tumors by modulating the function and expression of PrPC via the regulation of HSPA1L/HIF-1α expression and using an anti-prion antibody.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Giovanni Spagnolli ◽  
Tania Massignan ◽  
Andrea Astolfi ◽  
Silvia Biggi ◽  
Marta Rigoli ◽  
...  

AbstractRecent computational advancements in the simulation of biochemical processes allow investigating the mechanisms involved in protein regulation with realistic physics-based models, at an atomistic level of resolution. These techniques allowed us to design a drug discovery approach, named Pharmacological Protein Inactivation by Folding Intermediate Targeting (PPI-FIT), based on the rationale of negatively regulating protein levels by targeting folding intermediates. Here, PPI-FIT was tested for the first time on the cellular prion protein (PrP), a cell surface glycoprotein playing a key role in fatal and transmissible neurodegenerative pathologies known as prion diseases. We predicted the all-atom structure of an intermediate appearing along the folding pathway of PrP and identified four different small molecule ligands for this conformer, all capable of selectively lowering the load of the protein by promoting its degradation. Our data support the notion that the level of target proteins could be modulated by acting on their folding pathways, implying a previously unappreciated role for folding intermediates in the biological regulation of protein expression.


Oncogenesis ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. e291-e291 ◽  
Author(s):  
T Redmer ◽  
I Walz ◽  
B Klinger ◽  
S Khouja ◽  
Y Welte ◽  
...  

1997 ◽  
Vol 138 (6) ◽  
pp. 1395-1407 ◽  
Author(s):  
Kelly M. McNagny ◽  
Inger Pettersson ◽  
Fabio Rossi ◽  
Ingo Flamme ◽  
Andrej Shevchenko ◽  
...  

MEP21 is an avian antigen specifically expressed on the surface of Myb-Ets–transformed multipotent hematopoietic precursors (MEPs) and of normal thrombocytes. Using nanoelectrospray tandem mass spectrometry, we have sequenced and subsequently cloned the MEP21 cDNA and named the gene thrombomucin as it encodes a 571–amino acid protein with an extracellular domain typical of the mucin family of proteoglycans. Thrombomucin is distantly related to CD34, the best characterized and most used human hematopoietic stem cell marker. It is also highly homologous in its transmembrane/intracellular domain to podocalyxinlike protein–1, a rabbit cell surface glycoprotein of kidney podocytes. Single cell analysis of yolk sac cells from 3-d-old chick embryos revealed that thrombomucin is expressed on the surface of both lineage-restricted and multipotent progenitors. In the bone marrow, thrombomucin is also expressed on mono- and multipotent progenitors, showing an overlapping but distinct expression pattern from that of the receptor-type stem cell marker c-kit. These observations strengthen the notion that the Myb-Ets oncoprotein can induce the proliferation of thrombomucin-positive hematopoietic progenitors that have retained the capacity to differentiate along multiple lineages. They also suggest that thrombomucin and CD34 form a family of stem cell–specific proteins with possibly overlapping functions in early hematopoietic progenitors.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4196-4196
Author(s):  
Yoshikane Kikushige ◽  
Junichiro Yuda ◽  
Takahiro Shima ◽  
Toshihiro Miyamoto ◽  
Koichi Akashi

Abstract Acute myeloid leukemia (AML) originates from self-renewing leukemic stem cells (LSCs), an ultimate therapeutic target for AML. We have reported that the T-cell immunoglobulin mucin-3 (TIM-3) is expressed on LSCs in most types of AML but not on normal hematopoietic stem cells (HSCs) (Kikushige et al, Cell Stem Cell, 2010). We extended the analysis of TIM-3 expression into various types of human hematological malignancies, and found that human TIM-3 is expressed in the vast majority of CD34+CD38- LSCs of human myeloid malignancies including chronic myeloid leukemia, chronic myelomonocytic leukemia and myelodysplastic syndromes (MDS). Although CD34+CD38- normal bone marrow stem cells do not express TIM-3, TIM-3 is expressed in the CD34+CD38- population in MDS, and is further up-regulated with progression into leukemia. The average percentages of TIM-3+ cells in the CD34+CD38- population was 7.8% in RCMD (n=10), 19.2% in RAEB-1 (n=10), 84.0% in RAEB-2 (n=10) and 92.2% in overt AML (n=10). The close association of TIM-3 expression with transformation into AML led us to hypothesize that TIM-3 itself has a function in AML stem cell development. TIM-3 is a type 1 cell-surface glycoprotein and has a structure that includes an N-terminal immunoglobulin variable domain followed by a mucin domain, a transmembrane domain and a cytoplasmic tail. Tyrosine residues are clustered in the cytoplasmic tail, suggesting that TIM-3 can induce signal transduction in TIM-3+ AML cells. To understand the function of TIM-3, we investigated the interaction between TIM-3 and its ligand galectin-9 in AML LSCs. We found that AML patients showed significantly higher serum galectin-9 concentration than healthy individuals (healthy controls: 18.3+4.3 pg/ml, AML patients: 139.1+33.4 pg/ml, P<0.05). Unexpectedly, we found that leukemic cells expressed a high level of galectin-9 protein, as compared to other hematopoietic cells including T cells, B cells and monocytes. Using KASUMI-3 (TIM-3+ AML cell line) and primary AML samples, we confirmed that AML cells could secrete galectin-9 after TLR stimulation in vitro. Furthermore, microarray analysis demonstrated that TIM-3 stimulation by the physiological concentration of galectin-9 induced significant gene expression changes toward pro-survival axis including up-regulation of MCL-1, the important survival factor for HSCs and LSCs. These results collectively suggest that AML cells can produce and secrete galectin-9, and galectin-9 can bind and stimulate TIM-3-expressing AML cells including LSCs in an autocrine manner to support their survival or leukemia progression. Disclosures: Miyamoto: Kyushu University Hospital: Employment.


2014 ◽  
Vol 8 (3) ◽  
pp. 180-192 ◽  
Author(s):  
Bozena Kaminska ◽  
Dorota Kulesza ◽  
Kavita Ramji

2012 ◽  
Vol 186 (11) ◽  
pp. 1180-1188 ◽  
Author(s):  
Chi-Tai Yeh ◽  
Alexander T. H. Wu ◽  
Peter M.-H. Chang ◽  
Kuan-Yu Chen ◽  
Chia-Ning Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document