scholarly journals Mitochondrial Localization of the Yeast Forkhead Factor Hcm1

2020 ◽  
Vol 21 (24) ◽  
pp. 9574
Author(s):  
María José Rodríguez Colman ◽  
Joaquim Ros ◽  
Elisa Cabiscol

Hcm1 is a member of the forkhead transcription factor family involved in segregation, spindle pole dynamics, and budding in Saccharomyces cerevisiae. Our group described the role of Hcm1 in mitochondrial biogenesis and stress resistance, and in the cellular adaptation to mitochondrial respiratory metabolism when nutrients decrease. Regulation of Hcm1 activity occurs at the protein level, subcellular localization, and transcriptional activity. Here we report that the amount of protein increased in the G1/S transition phase when the factor accumulated in the nucleus. In the G2/M phases, the Hcm1 amount decreased, and it was translocated outside the nucleus with a network-like localization. Preparation of highly purified mitochondria by a sucrose gradient density demonstrated that Hcm1 colocalized with mitochondrial markers, inducing expression of COX1, a mitochondrial encoded subunit of cytochrome oxidase, in the G2/M phases. Taken together, these results show a new localization of Hcm1 and suggest that it acts as a mitochondrial transcription factor regulating the metabolism of this organelle.

2006 ◽  
Vol 235 (4) ◽  
pp. 1074-1080 ◽  
Author(s):  
Deidre Mattiske ◽  
Paula Sommer ◽  
Susan H. Kidson ◽  
Brigid L.M. Hogan

2000 ◽  
Vol 20 (13) ◽  
pp. 4773-4781 ◽  
Author(s):  
Shun Yamaguchi ◽  
Shigeru Mitsui ◽  
Lily Yan ◽  
Kazuhiro Yagita ◽  
Shigeru Miyake ◽  
...  

ABSTRACT Transcript levels of DBP, a member of the PAR leucine zipper transcription factor family, exhibit a robust rhythm in suprachiasmatic nuclei, the mammalian circadian center. Here we report that DBP is able to activate the promoter of a putative clock oscillating gene,mPer1, by directly binding to the mPer1promoter. The mPer1 promoter is cooperatively activated by DBP and CLOCK-BMAL1. On the other hand, dbp transcription is activated by CLOCK-BMAL1 through E-boxes and inhibited by the mPER and mCRY proteins, as is the case for mPer1. Thus, a clock-controlled dbp gene may play an important role in central clock oscillation.


2001 ◽  
Vol 276 (36) ◽  
pp. 33554-33560 ◽  
Author(s):  
Eric R. Schuur ◽  
Alexander V. Loktev ◽  
Manju Sharma ◽  
Zijie Sun ◽  
Richard A. Roth ◽  
...  

2008 ◽  
Vol 295 (3) ◽  
pp. H1206-H1215 ◽  
Author(s):  
Cindy X. Fang ◽  
Feng Dong ◽  
D. Paul Thomas ◽  
Heng Ma ◽  
Leilei He ◽  
...  

Cellular hypertrophy is regulated by coordinated pro- and antigrowth machineries. Foxo transcription factors initiate an atrophy-related gene program to counter hypertrophic growth. This study was designed to evaluate the role of Akt, the forkhead transcription factor Foxo3a, and atrophy genes muscle-specific RING finger (MuRF)-1 and atrogin-1 in cardiac hypertrophy and contractile dysfunction associated with high-fat diet-induced obesity. Mice were fed a low- or high-fat diet for 6 mo along with a food-restricted high-fat weight control group. Echocardiography revealed decreased fractional shortening and increased end-systolic diameter and cardiac hypertrophy in high-fat obese but not in weight control mice. Cardiomyocytes from high-fat obese but not from weight control mice displayed contractile and intracellular Ca2+ defects including depressed maximal velocity of shortening/relengthening, prolonged duration of shortening/relengthening, and reduced intracellular Ca2+ rise and clearance. Caspase activities were greater in high-fat obese but not in weight control mouse hearts. Western blot analysis revealed enhanced basal Akt and Foxo3a phosphorylation and reduced insulin-stimulated phosphorylation of Akt and Foxo3a without changes in total protein expression of Akt and Foxo3a in high-fat obese hearts. RT-PCR and immunoblotting results displayed reduced levels of the atrogens atrogin-1 and MuRF-1, the upregulated hypertrophic markers GATA4 and ciliary neurotrophic factor receptor-α, as well as the unchanged calcineurin and proteasome ubiquitin in high-fat obese mouse hearts. Transfection of H9C2 myoblast cells with dominant-negative Foxo3a adenovirus mimicked palmitic acid (0.8 mM for 24 h)-induced GATA4 upregulation without an additive effect. Dominant-negative Foxo3a-induced upregulation of pAkt and repression of phosphatase and tensin homologue were abrogated by palmitic acid. These results suggest a cardiac hypertrophic response in high-fat diet-associated obesity at least in part through inactivation of Foxo3a by the Akt pathway.


2011 ◽  
Vol 12 (12) ◽  
pp. 8947-8960 ◽  
Author(s):  
Mehlika Hazar-Rethinam ◽  
Liliana Endo-Munoz ◽  
Orla Gannon ◽  
Nicholas Saunders

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8473
Author(s):  
Xinling Hu ◽  
Lisha Zhang ◽  
Iain Wilson ◽  
Fenjuan Shao ◽  
Deyou Qiu

The MYB transcription factor family is one of the largest gene families playing regulatory roles in plant growth and development. The MYB family has been studied in a variety of plant species but has not been reported in Taxus chinensis. Here we identified 72 putative R2R3-MYB genes in T. chinensis using a comprehensive analysis. Sequence features, conversed domains and motifs were characterized. The phylogenetic analysis showed TcMYBs and AtMYBs were clustered into 36 subgroups, of which 24 subgroups included members from T. chinensis and Arabidopsis thaliana, while 12 subgroups were specific to one species. This suggests the conservation and specificity in structure and function of plant R2R3-MYBs. The expression of TcMYBs in various tissues and different ages of xylem were investigated. Additionally, miRNA-mediated posttranscriptional regulation analysis revealed that TcMYBs were the targets of miR858, miR159 and miR828, suggesting the posttranscriptional regulation of MYBs is highly conserved in plants. The results provide a basis for further study the role of TcMYBs in the regulation of secondary metabolites of T. chinensis.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Sarah Clark ◽  
Janette B Myers ◽  
Ashleigh King ◽  
Radovan Fiala ◽  
Jiri Novacek ◽  
...  

The transcription factor ASCIZ (ATMIN, ZNF822) has an unusually high number of recognition motifs for the product of its main target gene, the hub protein LC8 (DYNLL1). Using a combination of biophysical methods, structural analysis by NMR and electron microscopy, and cellular transcription assays, we developed a model that proposes a concerted role of intrinsic disorder and multiple LC8 binding events in regulating LC8 transcription. We demonstrate that the long intrinsically disordered C-terminal domain of ASCIZ binds LC8 to form a dynamic ensemble of complexes with a gradient of transcriptional activity that is inversely proportional to LC8 occupancy. The preference for low occupancy complexes at saturating LC8 concentrations with both human and Drosophila ASCIZ indicates that negative cooperativity is an important feature of ASCIZ-LC8 interactions. The prevalence of intrinsic disorder and multivalency among transcription factors suggests that formation of heterogeneous, dynamic complexes is a widespread mechanism for tuning transcriptional regulation.


2013 ◽  
Vol 52 (1) ◽  
pp. R17-R33 ◽  
Author(s):  
Adrien Georges ◽  
Aurelie Auguste ◽  
Laurianne Bessière ◽  
Anne Vanet ◽  
Anne-Laure Todeschini ◽  
...  

Forkhead box L2 (FOXL2) is a gene encoding a forkhead transcription factor preferentially expressed in the ovary, the eyelids and the pituitary gland. Its germline mutations are responsible for the blepharophimosis ptosis epicanthus inversus syndrome, which includes eyelid and mild craniofacial defects associated with primary ovarian insufficiency. Recent studies have shown the involvement of FOXL2 in virtually all stages of ovarian development and function, as well as in granulosa cell (GC)-related pathologies. A central role of FOXL2 is the lifetime maintenance of GC identity through the repression of testis-specific genes. Recently, a highly recurrent somatic FOXL2 mutation leading to the p.C134W subtitution has been linked to the development of GC tumours in the adult, which account for up to 5% of ovarian malignancies. In this review, we summarise data on FOXL2 modulators, targets, partners and post-translational modifications. Despite the progresses made thus far, a better understanding of the impact of FOXL2 mutations and of the molecular aspects of its function is required to rationalise its implication in various pathophysiological processes.


2010 ◽  
Vol 9 (4) ◽  
pp. 634-644 ◽  
Author(s):  
Adnane Sellam ◽  
Christopher Askew ◽  
Elias Epp ◽  
Faiza Tebbji ◽  
Alaka Mullick ◽  
...  

ABSTRACT The NDT80/PhoG transcription factor family includes ScNdt80p, a key modulator of the progression of meiotic division in Saccharomyces cerevisiae. In Candida albicans, a member of this family, CaNdt80p, modulates azole sensitivity by controlling the expression of ergosterol biosynthesis genes. We previously demonstrated that CaNdt80p promoter targets, in addition to ERG genes, were significantly enriched in genes related to hyphal growth. Here, we report that CaNdt80p is indeed required for hyphal growth in response to different filament-inducing cues and for the proper expression of genes characterizing the filamentous transcriptional program. These include noteworthy genes encoding cell wall components, such as HWP1, ECE1, RBT4, and ALS3. We also show that CaNdt80p is essential for the completion of cell separation through the direct transcriptional regulation of genes encoding the chitinase Cht3p and the cell wall glucosidase Sun41p. Consistent with their hyphal defect, ndt80 mutants are avirulent in a mouse model of systemic candidiasis. Interestingly, based on functional-domain organization, CaNdt80p seems to be a unique regulator characterizing fungi from the CTG clade within the subphylum Saccharomycotina. Therefore, this study revealed a new role of the novel member of the fungal NDT80 transcription factor family as a regulator of cell separation, hyphal growth, and virulence.


Sign in / Sign up

Export Citation Format

Share Document